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Abstract

With the aim of exploring the impact of continuous measurement in quantum gravity, the
paper delves into various Sachdev-Ye-Kitaev (SYK) models. The SYK model is a quantum
mechanical system that consists of a large number of Majorana fermions and exhibits the
properties of a one-dimensional conformal field theory in the large N and low-energy limits,
which is dual to two-dimensional quantum gravity. We first studied the low-energy effective
action of the Maldacena & Qi model (MQ model), namely the Schwarzian action, and ex-
plored its dynamics as well as its relationship with wormholes. In the higher-energy region
of this model, the dynamics are dominated by the Schwinger-Dyson (SD) equations. These
techniques will be applied in the study of measurement-induced phase transitions (MIPT)
that appear in the SYK model and its gravitational dual, as well as in the Lindbladian SYK
model of open systems. We reviewed the detailed derivations of these theories and supple-
mented key details on both the Jackiw-Teitelboim (JT) gravity side and the SYK side, thereby
deepening our understanding of the nature of the JT/SYK duality and the broad applications
of the MQ model.

Key words: Quantum gravity, Holographic principle, Jackiw-Teitelboim gravity, Sachdev-
Ye-Kitaev model, Wormhole, Measurement-induced phase transition, Lindbladian dynamics
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Chapter 1 Introduction

Motivation

Measurement plays a crucial role in quantum mechanics. Through the holographic prin-
ciple, we gain insights into how duality can connect two systems that appear vastly different at
first glance. This allows us to investigate how measurements affect quantum gravity, a ques-
tion that many people care about deeply and which serves as the motivation for the research
presented in this paper. In this project, we aim to explore the implications of measurements
in gravitational systems through our study of the Sachdev-Ye-Kitaev (SYK) model.

Holography:

In the 1970s, the discovery that black hole entropy is proportional to the area of its event
horizon rather than its volume led physicists to realize that the true dynamical degrees of
freedom in a gravitational system may correspond to physics existing in one fewer dimension.
This insight gave rise to the holographic principle, which later evolved into the AdS/CFT
correspondence conjecture. There is a duality between 𝑛 + 1 dimensional Anti-de Sitter
gravity and n-dimensional Conformal Field Theory. In 1997, Maldacena provided a top-
down realization of this correspondence for 𝐴𝑑𝑆5/𝐶𝐹𝑇4.[1][2]. And more specific version of
general AdS/CFT refers to GKPW dictionary[3]

𝑍grav [𝜙𝑖0(𝑥); 𝜕𝑀] =
〈
exp

(
−

∑
𝑖

∫
𝑑𝑑𝑥𝜙𝑖0(𝑥)𝑂𝑖 (𝑥)

)〉
CFT on 𝜕𝑀

JT SYK:

Currently, one of the worldwide research interest lies in the study of the 𝐴𝑑𝑆2/𝐶𝐹𝑇1,particularly
on the duality between Jackiw- Teitelboim Gravity and Sachdev-Ye-Kitaev model. JT/SYK
dual JT gravity is one of the 2D dilaton gravity model. Free JT gravity has no dynamic in its
bulk in pure 2D Einstein gravity. All the dynamic in JT gravity lies on its nearly 𝐴𝑑𝑆2 bound-
ary. The effective description for this low energy region would be suit in Schwarzian Action
which is the simplest action preserving 𝑆𝐿 (2, 𝑅) symmetry. SYK side would ultimately at-
tain similar description and the similar effective description implies those two system has
consistent behavior. SYK is a model lives in 0+1-dimensional, where there are well-defined

1
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quantum mechanics.[4][5].
Holographic dictionary helps us map onto gravitational systems, enabling us to discuss

concepts like entanglement in gravitational system. In certain parameter range, there would
be a gravitational description as wormholes[6][7][8]. And manipulation on quantum system
would help us gain vision on wormhole system as what Google did in 2019[9]. Study mea-
surement using JT/SYK dual would delve deeper in our the understanding of gravity, and
would also have the chance to bridge the gap between formal theory and laboratory experi-
ments, and may in turn deepen our comprehension of measurement.

Measurement:

As for measurement, with the flourishing of quantum computing and AMO physics, a
deeper understanding of measurement has become increasingly significant. Axioms of mea-
surement tells that after a measurement, the wavefunction collapse to one eigenstate of the
operator represented the observable being measured.We will introduce a description of mea-
surements in field theory systems. Generally, for non-equilibrium systems, the Lindbladian
dynamics described in the Schwinger-Keldysh Path Integral formalism will be used[10][8], and
in the article we focus on[11], the weak projection approximation is used to obtain a dynamical
description very similar to that in Maldacena and Qi[6]. Additionally, Milekhin’s work men-
tions the observation of Measurement Induced Phase Transition phenomena. In the model
they discussed, the well-defined measurement-induced phase transition (MIPT) on the field
theory side can be given by holography on the gravitational side as traversable wormholes
and the phase transition of two black holes, which is of great significance for studying mea-
surements on the gravitational side.

Arrangement Of The Thesis

The holographic principle, the JT/SYK duality, and MIPT are introduced so that readers
can understand the motivation of this research. Due to time constraints and my limited aca-
demic ability, I am unable to conduct more in-depth research. This paper mainly presents the
important conclusions and corresponding derivations of the JT/SYK duality to MIPT. The
structure of this paper is as follows. In Chapter 2, the basic setup of the SYK model and the
corresponding techniques are introduced. In Chapter 3, the duality between JT gravity and
SYK is discussed in the context of the Schwarzian region, which is extremely important for

2
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the subsequent discussion of the low-energy dynamics of the MQ model and other models.
In Chapter 4, the construction of the MQ model in the large N low-energy limit is discussed,
and in Chapter 5, some techniques for solving the MQ model are presented. After the basic
discussion, in Chapter 6, some models different from the MQ model are discussed, which
can describe measurement protocols in specific situations. Finally, we further discuss top-
ics beyond measurement. In Chapter 7, we briefly discuss the description of SYK in open
systems, the corresponding Lindbladian dynamics, and their solutions.

It is evident that completing all the above discussions is a massive project. Therefore,
as a mediocre undergraduate thesis, this paper cannot possibly cover every aspect, and not
all key steps can be explained thoroughly. The strategy adopted in this paper is to mark the
content that cannot be successfully reproduced with • and directly cite the conclusions from
the relevant papers.

3
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Chapter 2 SYK Model

2.1 The Model
2.1.1 Physical Meaning of SYK Model

The following physics intuition is referred to the introduction given by Prof. Zhang at the
South East Univ summer camp.[12]

The Heisenberg model describes the coupling of neighboring spins with a fixed coupling
constant, given by the Hamiltonian 𝐻 =

∑
〈𝑥,𝑦〉 𝐽𝑆𝑥𝑆𝑦.

Sachdev and Ye upgraded this model to 𝐻 =
∑

𝑖< 𝑗 𝐽𝑖 𝑗𝑆𝑖𝑆 𝑗 , which can be extended to
𝑆𝑈 (2), 𝑆𝑈 (𝑁), and further generalized to the 𝑆𝑈 (𝑁) 4-fermion model.[13]

Kitaev simplified the model by focusing on the coupling of Majorana fermions, describ-
ing 𝑁 quantum dots where any 𝑞 dots are coupled, and the coupling is a Gaussian random
variable.

2.1.2 Mathematical Settings of SYK Model

The Hamiltonian of the SYK model is

𝐻 = 𝑖
𝑞
2

∑
1≤𝑖1<...<𝑖𝑞≤𝑁

𝐽𝑖1...𝑖𝑞𝜓𝑖1 . . . 𝜓𝑖𝑞 (2-1)

The SYK model is characterized by the following properties:
1. The fields 𝜓𝑖 are Majorana fermions, which satisfy the conditions

𝜓† = 𝜓 and {𝜓𝑖, 𝜓 𝑗} = 𝛿𝑖 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁. (2-2)

2. The parameter 𝑞 is restricted to even integers, i.e., 𝑞 ∈ 2Z. This ensures that the
Hamiltonian is invariant under the exchange of fermionic indices.

3. The factor 𝑖
𝑞
2 is introduced to ensure the Hermiticity of the Hamiltonian. Specifically,

it guarantees that

𝐻† = (−𝑖)
𝑞
2 𝐽𝑖1...𝑖𝑞𝜓𝑖𝑞 . . . 𝜓𝑖1 = 𝑖

𝑞
2 𝐽𝑖1...𝑖𝑞𝜓𝑖1 . . . 𝜓𝑖𝑞 = 𝐻. (2-3)

4. The couplings 𝐽𝑖1...𝑖𝑞 are real random Gaussian variables with the following properties:

〈𝐽𝑖1...𝑖𝑞〉 = 0, 〈𝐽2
𝑖1...𝑖𝑞

〉 = 𝜎2, (2-4)

5
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where the variance 𝜎 is given by

𝜎 =
√
(𝑞 − 1)! 𝐽

𝑁
𝑞−1

2

. (2-5)

The Gaussian distribution of these couplings has a weight factor of

𝑒
𝐽2
𝑖1 ...𝑖𝑞
2𝜎2 . (2-6)

5. For the specific case of 𝑞 = 4, the Hamiltonian is often expressed as

𝐻 =
𝑁∑

𝑖 𝑗𝑘𝑙=1

𝐽𝑖 𝑗𝑘𝑙𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙 . (2-7)

This form highlights the quartic interaction among the Majorana fermions with random
coupling.𝐽𝑖 𝑗𝑘𝑙 may seem to take arbitrary values, but we must not forget 𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙

are fermions following the anti-commutation law. Therefore the random variable 𝐽𝑖 𝑗𝑘𝑙
must be antisymmetric:

𝐽𝑖 𝑗𝑘𝑙 = −𝐽𝑖 𝑗𝑙𝑘 (2-8)

2.2 Schwinger Dyson Equation and 𝐺𝛴 Action

Once we have the expression of green function with self-eregy correction of a theory, a
model can be ”Solved”. We can draw the feynmann diagram to express the relation of self
energy and green funciton. In references[4],[14],[15], and numerous related literature, there is
a detailed discussion of the Feynman rules for the SYK model. The Green’s function 𝐺free

and the associated self-energy corrections are calculated accordingly. For the SYK𝑞 model,
the Schwinger-Dyson equation shows in the following

𝐺 = [𝜕𝜏 − 𝛴]−1 , (2-9)
𝛴 (𝜏, 𝜏′) = 𝐽2 [𝐺 (𝜏, 𝜏′)]𝑞−1 . (2-10)

However, it would be hard to discuss the theory all the way through feymann diagram.
In this section, we focus on describing the SYK model using the path integral approach. By
introducing the effective fields 𝐺 and 𝛴 . They are no longer be seen as green function and
self energy function but fields in current context, when those fields becomes on-shell, their

6
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EOM describes the correct Schwinger Dyson equations. Therefore, we can study the SYK
model by examining the new 𝐺𝛴 action together with the on-shell conditions.

This section first discusses how to take the ensemble average of the original action, that
is, integrating over the random coupling. Then, I’ll discusses the 𝐺𝛴 action for Majorana
fermions and derives the SD equations for this action. Some steps may seem arbitrary, and
here we will also compare the 𝐺𝛴 actions for real scalars and complex scalars to deepen the
understanding of the method we use in deriving 𝐺𝛴 action.

2.2.1 Ensemble average over random variables

In general case, we should perform ensemble averaging on observable physical quantities,
i.e., 〈ln 𝑍〉, but this calculation is quite complex. On the other hand, it can be shown that in
the large 𝑁 limit, 〈ln 𝑍〉 ≈ ln〈𝑍〉, so we directly perform ensemble averaging on the partition
function. Therefore the partition function after ensemble average would be given by

〈𝑍〉 =
∫
D𝜓

∫
𝑑𝐽· · ·𝑒

− 𝐽2· · ·
2𝜎2 𝑒−𝐼 , (2-11)

where 𝐼 is the Euclidean space action represented as

𝐼 =
1
2
𝜓𝑖𝜕𝜓

𝑖 − 𝐻. (2-12)

It is known that the gaussian integration gives us∫
𝑑𝐽𝑒−

𝐽2
2𝜎2 −𝐽𝑋 = 𝑒

𝜎2𝑋2
2 .

The function we need to perform Gaussian integral averaging is as follows:

exp
[
−

∫
𝑖
𝑞
2 𝐽𝑖1 · · ·𝑖𝑞𝜓

𝑖1 · · ·𝜓𝑖𝑞

]
.

Since 〈𝐽· · ·〉 = 0 and it is a random variable, there is index pairing, which is not going to be
detailedly discussed here. Finally, we obtain the result after ensemble averaging:

〈𝑍〉𝐽 ∼
∏
𝑖

∫
𝐷𝜓𝑖 exp

(
−

∫
𝑑𝜏

1
2

∑
𝑖

𝜓𝑖𝜕𝜏𝜓𝑖 (2-13)

+
∑

1≤𝑖1<· · ·<𝑖𝑞≤𝑁

𝑖𝑞
(𝑞 − 1)!𝐽2

2𝑁𝑞−1

∫ ∫
𝑑𝜏𝑑𝜏′(𝜓𝑖1 · · ·𝜓𝑖𝑞 )(𝜏)(𝜓𝑖1 · · ·𝜓𝑖𝑞 )(𝜏′)

ª®¬ . (2-14)

7
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The contribution of the interaction term after ensemble averaging is as follows,

exp

[
𝑖𝑞
(𝑞 − 1)!𝐽2

2𝑁 (𝑞−1)

(∫
𝑑𝜏𝜓𝑖1 · · ·𝜓𝑖𝑞

)2
]
. (2-15)

Calculation for 𝑞 = 4

To make the calculation method clearer, we take 𝑞 = 4 for a simple calculation (no need
to consider the 𝑖 factor here):

∑
1≤ 𝑗<𝑘<𝑙≤𝑁

(𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙) (𝜏) (𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙)(𝜏′) =
1
4!

[∑
𝑖

𝜓𝑖 (𝜏)𝜓𝑖 (𝜏′)
]4

. (2-16)

Proof

lhs =
∑

1≤𝑖< 𝑗<𝑘<𝑙≤𝑁

𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙 (𝜏)𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙 (𝜏′) =
1
4!

∑
𝑖≠ 𝑗≠𝑘≠𝑙

𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙 (𝜏)𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙 (𝜏′).

(2-17)
This step is valid due to the combinatorial property (also know as convert ordered sum-

mation to unordered summation) ∑
1≤𝑖< 𝑗<𝑘<𝑙≤𝑁

=
1
4!

∑
𝑖≠ 𝑗≠𝑘≠𝑙

. (2-18)

Note that 𝜓𝜓′ has already been time-ordered, i.e., 𝜓𝑎 (𝜏)𝜓𝑏 (𝜏′), so we only need to group
the same indices together. By group theory, we know that the parity of the number of swaps
needed for this rearrangement is the same, so without loss of generality, we start rearranging
from the 𝑙 index. This process requires 3 + 2 + 1 adjacent swaps, which does not contribute
to the sign difference. Thus, we obtain the following result:

1
4!

∑
𝑖≠ 𝑗≠𝑘≠𝑙

𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙𝜓
′
𝑖𝜓

′
𝑗𝜓

′
𝑘𝜓

′
𝑙 =

1
4!

∑
𝑖≠ 𝑗≠𝑘≠𝑙

𝜓𝑖𝜓
′
𝑖𝜓 𝑗𝜓

′
𝑗𝜓𝑘𝜓

′
𝑘𝜓𝑙𝜓

′
𝑙

=
1
4!

(∑
𝑖

𝜓𝑖𝜓
′
𝑖

) (∑
𝑗

𝜓 𝑗𝜓
′
𝑗

) (∑
𝑘

𝜓𝑘𝜓
′
𝑘

) (∑
𝑙

𝜓𝑙𝜓
′
𝑙

)
𝑖≠ 𝑗≠𝑘≠𝑙

.

Since 𝜓2(𝜏) = 0, we have ∑
𝑎

𝜓𝑎 ×
∑
𝑏

𝜓𝑏 =
∑
𝑎≠𝑏

𝜓𝑎𝜓𝑏, (2-19)

8
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so we can drop the restriction 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙, and thus obtain rhs. QED.
Remark:
There is a subtle point regarding the Gaussian integral and resummation. Here, we follow

the procedure of first performing the ensemble average over the random variable 𝐽·, and then
converting the ordered summation of Gaussian variables into an unordered summation, i.e.,∑
1≤𝑖1≤···≤𝑖𝑞≤𝑁

⇒ 1
𝑞!

∑
𝑖1≠· · ·≠𝑖𝑞

. While it is theoretically possible to interchange the order, it is

better in practice to first perform the ensemble average over the random variable and then
change the summation order. Otherwise, the following paradox may arise:

Consider the classic SYK4 model. If we first perform the unordered summation, the
object we need to average over the ensemble is:

exp
[
−

∫
1
4!
𝐽𝑖 𝑗𝑘𝑙𝜓

𝑖𝜓 𝑗𝜓𝑘𝜓𝑙

]
, (2-20)

Given the integral formula
∫
𝑑𝐽𝑖 𝑗𝑘𝑙𝑒

−
𝐽2
𝑖 𝑗𝑘𝑙

2𝜎2 −𝐽𝑖 𝑗𝑘𝑙𝑋 = 𝑒
𝜎2𝑋2

2 , we obtain the interaction part
after ensemble averaging as follows, which seems to lead to a paradox:

3𝐽2

𝑁3 · 1
(4!)2

(( ∑
𝑖1≠· · ·≠𝑖𝑞

∫
𝑑𝑡 𝜓𝑖𝜓 𝑗𝜓𝑘𝜓𝑙

)
×

( ∑
𝑖1≠· · ·≠𝑖𝑞

∫
𝑑𝑡′ 𝜓′𝑖𝜓′ 𝑗𝜓′𝑘𝜓′𝑙

))
(2-21)

Note that in our previous discussion, the summation we described was
∑

1≤𝑖1≤···≤𝑖𝑞≤𝑁
, whereas

the summation we are discussing now is
∑

𝑖1≠· · ·≠𝑖𝑞
. Compared to the previous form, this allows

𝑖, 𝑗 , 𝑘, 𝑙 to be permuted, resulting in a contribution of 𝑞! and we have to count in this sym-
metry contribution.

Generalization to Arbitrary 𝑞

Note that the above discussion only holds for 𝑞 = 4. To generalize to arbitrary 𝑞 coupling,
we need 𝑞2−𝑞

2 adjacent swaps, which may contribute to the sign factor. Bringing back the
original 𝑖 factor, we can see that the signs exactly cancel out.

9
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lhs ∝ 𝑖𝑞
∑

1≤𝑖1<𝑖2<· · ·<𝑖𝑞≤𝑁

𝜓𝑖1𝜓𝑖2 · · ·𝜓𝑖𝑞 (𝜏)𝜓𝑖1𝜓𝑖2 · · ·𝜓𝑖𝑞 (𝜏′)

= 𝑖𝑞
1
𝑞!

∑
𝑖1≠𝑖2≠· · ·≠𝑖𝑞

𝜓𝑖1𝜓𝑖2 · · ·𝜓𝑖𝑞 (𝜏)𝜓𝑖1𝜓𝑖2 · · ·𝜓𝑖𝑞 (𝜏′)

= (−1)
𝑞2−𝑞

2 · (−1)
𝑞
2

1
𝑞!

∑
𝑖1≠𝑖2≠· · ·≠𝑖𝑞

𝜓𝑖1𝜓
′
𝑖1
𝜓𝑖2𝜓

′
𝑖2
· · ·𝜓𝑖𝑞𝜓

′
𝑖𝑞

=
1
𝑞!

(∑
𝑖1

𝜓𝑖1𝜓
′
𝑖1

) (∑
𝑖2

𝜓𝑖2𝜓
′
𝑖2

)
· · ·

(∑
𝑖𝑞

𝜓𝑖𝑞𝜓
′
𝑖𝑞

)
𝑖1≠𝑖2≠· · ·≠𝑖𝑞

.

2.2.2 𝐺𝛴 Actions and SD eqns For Majorana Fermions

Majorana fermions are the case we concerned in following pages, though different field
can be used with corresponding modification. Now we are going to deal the integration over
𝜓 to derive the functional determinant at first. Then we are going to derive the 𝐺𝛴 action as
follows. Doing the variation over 𝐺, 𝛴 would give the SD eqns in the end.

2.2.2.1 Functional Determinant:

Sarosi mentions the use of Gaussian-Berezin-integral:∫
D𝜓𝑒− 1

2 𝜓·𝐴·𝜓 = Constant ·
√

det 𝐴 (2-22)

Many references, such as[16], write the right-hand side as related to Pf(𝐴), with the definition
as follows:

𝑒
1
2 Tr[log(𝐴) ] = Pf(𝐴) (2-23)

For more properties of Grassmann number integrals, see[17].
Note that for infinite-dimensional linear spaces, the continuous version of matrix dot

product corresponds to ∫
𝑑𝜏1𝑑𝜏2 𝜓(𝜏1)𝐴(𝜏1, 𝜏2)𝜓(𝜏2) (2-24)

which is why we need to discuss with integral parameters without getting tired. And some
definitions that may be used are as follows.

10
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2.2.2.2 Inserting 𝐺𝛴 Identity:

After performing the ensemble average of 𝐽· · · in the SYK model in last section, we obtain
the effective action in the following form:

𝐼 =
∫
𝑑𝜏

1
2
𝜓𝑖 (𝜏)𝜕𝜏𝜓𝑖 (𝜏) + Constant ·

∫
𝑑𝜏1𝑑𝜏2•

(
𝑁∑
𝑖=1

1
𝑁
𝜓𝑖 (𝜏1)𝜓𝑖 (𝜏2)

)𝑞
(2-25)

To conveniently write it in the form of a matrix quadratic form later, we rewrite
∫
𝑑𝜏𝜓(𝜏)𝜕𝜏𝜓(𝜏)

as ∫
𝑑𝜏1𝑑𝜏2𝜓(𝜏1) · 𝛿(𝜏12)𝜕𝜏1𝜓(𝜏2) (2-26)

𝐺𝛴 Identity: Insert it at the position of the red dot above

1 ∼ 𝛿
(
𝐺 (𝜏1, 𝜏2) −

1
𝑁

𝑁∑
𝑖=1

𝜓𝑖 (𝜏1)𝜓𝑖 (𝜏2)
)

∝
∫
D𝛴 (𝜏1, 𝜏2) exp

(
−𝑁

2
𝛴 (𝜏1, 𝜏2)

(
𝐺 (𝜏1, 𝜏2) −

1
𝑁

𝑁∑
𝑖=1

𝜓𝑖 (𝜏1)𝜓𝑖 (𝜏2)
))

Here we rewrite the integral in the form of an inner product ·, so the 𝜓 part in the partition
function can be deformed as follows (with 𝜏1,2 representing the row and column indices of
the operator respectively):∏

𝑖

∫
D𝜓𝑖 exp

[
−

∑
𝑖

1
2
𝜓𝑖 · 𝛿(𝜏12)𝜕𝜏1 · 𝜓𝑖 +

1
2

∑
𝑖

𝜓𝑖 · 𝛴 · 𝜓𝑖

]
=
∏
𝑖

(∫
D𝜓𝑖𝑒

− 1
2 𝜓𝑖 · (𝛿 (𝜏12 )𝜕𝜏1−𝛴 ) ·𝜓𝑖

)
∝

∏
𝑖

det(𝛿(𝜏12)𝜕𝜏1 − 𝛴)
1
2

=𝑒
𝑁
2 ln det(𝛿 (𝜏12 )𝜕𝜏1−𝛴 )

=𝑒
𝑁
2 Tr ln(𝛿 (𝜏1,𝜏2 )𝜕𝜏−𝛴 )

The last step uses the equality Tr ln𝑀 = ln det𝑀 , and under the consideration of Tr, we no
longer need to consider 𝛿(𝜏12), and it can also be ignored in ln det.

Considering 𝑍 (𝐽) ∼
∫
𝐷𝐺𝐷𝛴𝑒−𝑁𝐼 [𝐺,𝛴 ] , then we can find

−1
2

Tr ln(𝛿(𝜏1, 𝜏2)𝜕𝜏2 − 𝛴) ⊂ 𝐼 (2-27)
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2.2.2.3 Deriving the First Part of the SD Equation:

The first part is the variation of 𝛴 ,

𝐼 ⊃ −1
2

Tr ln(𝛿(𝜏1, 𝜏2)𝜕𝜏2 − 𝛴) +
1
2

∬
𝑑𝜏1𝑑𝜏2𝛴 (𝜏1, 𝜏2)𝐺𝜓 (𝜏1, 𝜏2) (2-28)

Varying 𝛴 gives

− 1
2

Tr
−𝛿𝛴

𝛿(𝜏1, 𝜏2)𝜕𝜏 − 𝛴
+ 1

2

∬
𝑑𝜏1𝑑𝜏2𝛿𝛴 (𝜏1, 𝜏2)𝐺𝜓 (𝜏1, 𝜏2)

=
1
2

Tr(𝛿𝛴 · (𝛿(𝜏1, 𝜏2)𝜕𝜏 − 𝛴)−1) + · · ·

=
1
2

Tr(
∫
𝑑𝜏2𝛿𝛴 (𝜏, 𝜏2) · (𝛿(𝜏1, 𝜏2)𝜕𝜏 − 𝛴)−1(𝜏2, 𝜏

′)) + · · ·

=
1
2

∬
𝑑𝜏1𝑑𝜏2 𝛿𝛴 (𝜏1, 𝜏2) ·

(
(𝛿(𝜏1, 𝜏2)𝜕𝜏 − 𝛴)−1(𝜏2, 𝜏1) + 𝐺𝜓 (𝜏1, 𝜏2

)
Due to the nature of fermions, considering𝐺𝜓 (𝜏1, 𝜏2) = −𝐺𝜓 (𝜏2, 𝜏1)(with detailed discussion
in appendix B), after swapping the order, we can regard the operator (𝛿(𝜏1, 𝜏2)𝜕𝜏 − 𝛴)−1 �

𝐺𝜓, so we have 𝛿(𝜏1, 𝜏2)𝜕𝜏𝐺 − 𝛴 · 𝐺 = 1.
When we assume that 𝐺 has translational symmetry (which can be given by the second

SD equation in the classical SYKq model), we can write 𝛴 · 𝐺 in the form of a convolution,
thus allowing us to solve it better in Fourier space.

In the process of derivation above, there are some elements that may seem arbitrary, such
as the 𝑁

2 in the exponential when inserting the identity matrix 1, as well as some derivations
involving functional determinants. These aspects will not change within the scope of the
MQ models we are discussing. However, for further research into different field types of MQ
models, a more in-depth discussion of the standard techniques of the Sachdev-Ye-Kitaev
model is provided in appendix A.
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Chapter 3 JT & SYK

We have understood that the SYK model exhibits properties of a one-dimensional con-
formal field theory in the large-N and the low-energy limit. We refer to this parameter section
as the Conformal Region. The subject of this chapter is to discuss what happens when we
move away from this region. We will find some thing very interesting. The effective action
of the SYK model slightly above conformal region and the effective action of JT gravity near
𝐴𝑑𝑆2 boundary have the same form, which can be seen as a realization for the 𝐴𝑑𝑆2/𝐶𝐹𝑇1

correspondence, as if there is a 𝐶𝐹𝑇1 living on the boundary of 𝐴𝑑𝑆2 gravity system.
In this chapter, we will introduce the Schwarzian dynamics of the SYK model and the

Schwarzian dynamics of JT Gravity. We will then discuss the dynamical properties in detail.
Specifically, we will first discuss the mathematical properties of the Schwarzian itself and
then discuss the Equation of Motion (EOM) of the Schwarzian Action.

3.1 SYK Model
3.1.1 Go Beyond Conformal Region

In our previous discussion, we have obtained the 𝐺 − 𝛴 action. Below, 𝐺̃, 𝛴 correspond
to the effective fields that are off-shell when considering the path integral

∫
D𝐺𝛴𝑒−𝑁𝐼 .

𝐼 ≡ 𝑆

𝑁
= −1

2
log det(𝜕𝑡 − 𝛴) +

1
2

∫
𝑑𝜏1𝑑𝜏2

[
𝛴 (𝜏1, 𝜏2)𝐺 (𝜏1, 𝜏2) −

𝐽2

𝑞
𝐺 (𝜏1, 𝜏2)𝑞

]
(3-1)

Also, because they are not on shell, we have the freedom to manipulate the 𝛴 field. We
choose to translate 𝛴 → 𝛴 + 𝜎, thus obtaining two parts 𝐼 = 𝐼𝐶𝐹𝑇 + 𝐼𝑆.

𝐼𝐶𝐹𝑇

𝑁
= −1

2
log det(−𝛴) + 1

2

∫
𝑑𝜏1𝑑𝜏2

(
𝛴 (𝜏1, 𝜏2)𝐺̃ (𝜏1, 𝜏2) −

𝐽2

𝑞
𝐺̃ (𝜏1, 𝜏2)𝑞

)
(3-2)

𝐼𝑆
𝑁

=
1
2

∫
𝑑𝜏1𝑑𝜏2 𝜎(𝜏1, 𝜏2)𝐺̃ (𝜏1, 𝜏2) (3-3)

With 𝜎(𝜏1, 𝜏2) ≡ 𝛿(𝜏1 − 𝜏2)𝜕𝜏 . We can easily derive the Schwinger-Dyson equations by
varying 𝐼𝐶𝐹𝑇 , and the resulting description is precisely the SYK𝑞 results for the Conformal
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Figure 3-1 Solutions of SYK at different energy scale

Region that we discussed earlier. Or we can see in the low erergy region where |𝐽𝜏 | � 1,
𝐼𝑆 can be thrown away,since 𝜎 ∼ 1

𝜏
is heavily suppressed. Therefore, We can consider the

dynamics beyond the Conformal Region by study 𝐼𝑆.

3.1.2 Study 𝐼𝑆

It would be hard to discuss the behavior of 𝜎 with out any approximation. We are going
to thrown it away and treate what remain in 𝐼𝑆 perturbatively. Before explain in detail and
solving the dynamics, lets firstly see the solutions of SYK at different E scale, in figure 3-1.
After that we can see why it is reasonable to treat 𝐼𝑆 as perturbation from 𝐼𝐶𝐹𝑇

High Energy: Through dimension analysis, we can see that [𝐽] = [𝐸] and this means
that interactive hamiltonian would be negligible at high energy scale and it becomes to a free
fermion theory already solved in QFT.

Low Energy: In low energy region, we already see that the system behaves as a 𝐶𝐹𝑇1 in
large N limit. We solved SD eqn with the ansatz of conformal correlator.

Schwarzian Limit: Now we are moving away from deep IR region. Instead of dropping
𝐼𝐶𝐹𝑇 in the action, what we do is actually slightly deform the conformal solution and view it
as a perturbation of IR action.

Technically, this means we need to modify 𝜎. Since 𝐼𝑆 describes time scale 𝛥𝜏 ∼ 0 (En-
ergy scale in UV), we introduce a regularization scheme, described by 𝜖 , to characterize the
overlap between 𝐼𝑆 and 𝐼𝐶𝐹𝑇 . In a sense, 𝜖 describes how far we are from the IR region in
most approach( However, not here in Suzuki’s approach, where he throw the 𝜎(𝜏1, 𝜏2) and
expand 𝜏12 directly.). Although methods are different and no article proved the equivalence,
they would all give the the schwarzian behavior once we focus on the leading behavior pro-

14
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portional to the lowest order of regularization parameter. We can understood it through its
physical meaning.

Physically, our operation is equivalent to expanding in terms of 𝜕𝜏 , and this operation,
when analyzed dimensionally, is equivalent to expanding in terms of (𝛽𝐽)−1. Therefore, the
physical interpretation of the Schwarzian Action is the behavior of the SYK model in the
low-temperature limit.

However, there are different regularization schemes. The mainstream includes those by
Maldacena[4] and Kitaev[16]. In Sarosi’s lecture notes[14], another method is also mentioned,
but this paper adopts a relatively simpler approach, referring to Suzuki[18][19]. During the
research process, a doctoral thesis involving a discussion of different methods was found[20].

3.1.3 Deriving Schwarzian:

We are going to deal with ∫
𝑑𝜏1𝑑𝜏2𝜎(𝜏1, 𝜏2) · 𝐺 (𝜏1, 𝜏2) (3-4)

Changing the variables by defining 𝜏12 ≡ 𝜏1 − 𝜏2 and 𝜏+ ≡ 𝜏1+𝜏2
2 . The Jacobi factor is 1.

After that, we are going to write the integral with new variables. Since there is a 𝜎(𝜏1, 𝜏2)
it means we are discussing a region where 𝜏12 � 1. It is worth noticing that we are not
using 𝜖 to measure how close our discussion is to the 𝜎(𝜏1, 𝜏2) in 𝐼𝑆. This can be regarded
as us discussing a deformed case of 𝐼𝑆, where we discard 𝜎(𝜏1, 𝜏2) but expand 𝜏12 as a small
quantity, thereby approximating our discussion.

Now we are going to deal with 𝐼𝑆 with 𝜎 thrown out and 𝐺 adopting conformal ansatz
as follows:

𝑏

(
| 𝑓 ′(𝜏1) 𝑓 ′(𝜏2) |

1
2

| 𝑓 (𝜏1) − 𝑓 (𝜏2) |

) 2
𝑞

(3-5)

We are going to expand the following factor at first:

1
| 𝑓 (𝜏1) − 𝑓 (𝜏2) |

=
1

| 𝑓 ′(𝜏2) | |𝜏1 − 𝜏2 |
− | 𝑓 ′′(𝜏2) |

2| 𝑓 ′(𝜏2) |2
+ | 𝑓 ′′(𝜏2) |2

4| 𝑓 ′(𝜏2) |3
|𝜏1−𝜏2 |−

| 𝑓 ′′′(𝜏2) |
6| 𝑓 ′(𝜏2) |2

|𝜏1−𝜏2 | + · · ·
(3-6)

15
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| 𝑓 ′(𝜏1) |
1
2 = | 𝑓 ′(𝜏2) |

1
2

[
1 + | 𝑓 ′′(𝜏2) |

2| 𝑓 ′(𝜏2) |
|𝜏1 − 𝜏2 | −

| 𝑓 ′′(𝜏2) |2
8| 𝑓 ′(𝜏2) |2

|𝜏1 − 𝜏2 |2 +
| 𝑓 ′′′(𝜏2) |
4| 𝑓 ′(𝜏2) |

|𝜏1 − 𝜏2 |2 + · · ·
]

(3-7)
Putting them together we’ll have

𝑏

[
1

|𝜏1 − 𝜏2 |
+ 1

12
| 𝑓 ′′′(𝜏2) |
| 𝑓 ′(𝜏2) |

|𝜏1 − 𝜏2 | −
1
8
| 𝑓 ′′(𝜏2) |2
| 𝑓 ′(𝜏2) |2

|𝜏1 − 𝜏2 | + · · ·
] 2

𝑞

(3-8)

Start from 𝑞 = 2 case

We are going to start with 𝑞 = 2, and we will see we have a wonderful result when 𝑞 = 2.
After that, we would use an 𝜖 expansion scheme to describe any 𝑞 where 𝑞 = 2

1−𝜖
. Since

we are expanding in 𝜖 which is less than 1, it would have finite divergent term, and converge
with proper renormalization.

Note that
𝑏𝑞 =

1
𝜋𝐽2

(
1
2
− 1
𝑞

)
tan

𝜋

𝑞
(3-9)

(where we used the result in Sarosi’s note). And for 𝑞 = 2, we can verify

lim
𝜂→2

(
1
2
− 1

2 + 2𝜂
tan

𝜋

2 + 2𝜂

)
=

1
𝜋

(3-10)

and it means 𝑏 = 1
𝜋𝐽

.
We are going to use a proper regularization scheme to remove the first term in equation

(12). Meanwhile, it has nothing to do with the dynamic mode 𝑓 (𝜏), we can treat it as the UV
behavior in the vacuum and has nothing to do with the dynamics we are talking about.

We can see that the 𝑞 = 2 effective action when we are out of IR, is as follows. (There is
an overall sign which needs to be identified carefully in the future.)

𝑆Sch,𝑞=2 = − 𝑁

24𝜋𝐽

∫
𝑑𝑡 Sch( 𝑓 (𝜏), 𝑡) (3-11)

For general 𝑞 cases

Since we already solved the 𝑞 = 2 case quite perfectly, we are going to extend to general
𝑞 cases. Here we are going to rewrite general 𝑞 as 2

1−𝜖
where 𝜖 ∈ [0, 1). The following power

expansion might be helpful, before doing further calculation.
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𝑥2/𝑞 = 𝑥1−𝜖 ∼ 𝑥 − 𝜖𝑥 log(𝑥) + 𝜖
2

2
𝑥 log2(𝑥) (3-12)

And 𝑥 here means | 𝑓 ′ (𝜏1 ) 𝑓 ′ (𝜏2 ) |
1
2

| 𝑓 (𝜏1 )− 𝑓 (𝜏2 ) | , the log part can also be expanded as

− log |𝜏1 − 𝜏2 | −
1
8
| 𝑓 ′′(𝜏2) |2
| 𝑓 ′(𝜏2) |2

|𝜏1 − 𝜏2 |2 +
1
12

| 𝑓 ′′′(𝜏2) |
| 𝑓 ′(𝜏2) |

|𝜏1 − 𝜏2 |2 + · · · (3-13)

Meanwhile, the 𝑏(𝑞) can be expanded as follows (This is the 𝑏(𝑞) from SYK𝑞 we’ll
discuss our result later)

1
𝜋𝐽

+ 𝜖 log(𝜋𝐽)
𝜋𝐽

+
𝜖2

(
12 log2(𝐽) + 24 log(𝜋) log(𝐽) − 𝜋2 + 12 log2(𝜋)

)
24𝜋𝐽

(3-14)

Putting these two parts together, we’ll have

𝜕𝜏1 ·
(

1
𝜏12

+ 𝐴𝜏12

12
− 𝐵𝜏12

8
− 𝜖

(
𝐴𝜏12

12
− 𝐵𝜏12

8
+ 1
𝜏12

) (
𝐴𝜏2

12

12
−
𝐵𝜏2

12

8
− log(𝜏12)

)
+ · · ·

)
= − 1

𝜏2
12

+ 𝐴

12
− 𝐵

8
+ O𝐴𝐵(𝜖, 𝜏12) + O(𝜖, 𝜏12)

With 𝐴 = | 𝑓 ′′′ (𝜏2 ) |
| 𝑓 ′ (𝜏2 ) | , 𝐵 = | 𝑓 ′′ (𝜏2 ) |2

| 𝑓 ′ (𝜏2 ) |2 What we do here is the double expansion over 𝜏12

and regularization parameter 𝜖 , and O𝐴𝐵 represent higher term in 𝑡, 𝜖 coupled with dynamic
mode 𝑓 (𝜏). We can ignore them since they are next order correction.O means the one that
did not coupled with 𝑓 (𝜏). We can throw them, as long as the one 1

𝜏12
, they did not describe

the dynamic of our system can proper renormalization would cancel these apart. And we can
see this procedure indeed gives us the Schwarzian we want where we use the definition on
Schwarzian as follows.

Sch(𝜏(𝑢), 𝑢) ≡ 2𝜏′𝜏′′′ − 3𝜏′′2

2𝜏′2
(3-15)

Our derivation above only arrives at the Schwarzian form in a simple manner, but for
the specific coefficients of the action, some numerical calculations are required, which we
denote as 𝛼𝑆/𝐽, and { 𝑓 (𝑢), 𝑢} means Sch( 𝑓 (𝑢), 𝑢). Here, we follow the notation used by
Maldacena[4].

𝑆 = −𝑁𝛼𝑆

J

∫
𝑑𝑢{ 𝑓 (𝑢), 𝑢} (3-16)

With J follow 𝐽2 (𝑞−1)!
𝑁𝑞−1 = 2𝑞−1

𝑞
J2 (𝑞−1)!
𝑁𝑞−1
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3.2 JT Gravity
3.2.1 Deriving Schwarzian Action in JT gravity

Since JT gravity is a broader field in theoretical physics, and the author’s main task is
to explore the equivalence between SYK and JT at the level of action, the form of the JT
gravity action is directly given here. For more discussions on JT gravity, one can refer to the
following papers[21][14].

𝐼 = − 𝜙

16𝜋𝐺


∫
𝑀

𝑑2𝑥
√
𝑔𝑅 + 2

∫
𝜕𝑀

𝐾

 (3-17)

− 1
16𝜋𝐺


∫
𝑀

𝑑2𝑥
√
𝑔𝜙(𝑅 + 2) + 2

∫
𝜕𝑀

𝜙𝑏𝐾

 (3-18)

In which the first part is the Gauss-Bonnet term, defined by Gauss-Bonnet, and the inte-
gral over the manifold 𝑀 is determined by the Euler characteristic 𝜒 of the manifold 𝑀 . It
can be seen that this is a topological property of the manifold 𝑀 , and there is no dynamics
we are looking for.

The second line allows us to obtain the dynamics at the boundary points of 𝐴𝑑𝑆2.After
integration over 𝜙𝑏𝑢𝑙𝑘 Or say using the EOM given by 𝜙, we are dealing with boundary Action
in 𝑅 = −2 which is 𝐴𝑑𝑆2 background spacetime.

𝐼𝑏𝑑𝑦 = − 1
8𝜋𝐺

∫
𝜕𝑀

𝜙𝐾

= − 1
8𝜋𝐺

∫
𝑑𝑢

√
𝑔𝑢𝑢

𝜙𝑟
𝜖
𝐾

= − 1
8𝜋𝐺

∫
𝑑𝑢
𝜙𝑟
𝜖2 𝐾

𝜖 is a UV cutoff parameter who is very very tiny, demonstrating how close we get to
the boundary of 𝐴𝑑𝑆2. Detailed discussion of it can be followed in the reference mentioned
above. Here, the second line is owing to the fact that dilaton field 𝜙 diverge as 𝜙𝑟

𝜖
at boundary;

and the last line is achieved by the boundary condition that 𝑔bdy = 1
𝜖 2 . Before Calculating 𝐾 ,

we need to define 𝑇 𝜇 and 𝑛𝜈 as tangent vector and normal vector for convenience.
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Before further calculating extrinsic curvature 𝐾 , we have to make following definination
at first.

Tangent vector’s,Extrinsic Curvature’s and Normal vector’s definition:

𝐾 ≡ 𝑔𝜇𝜈∇𝜇𝑛𝜈𝑇
𝜇 ≡ (𝑡′(𝑢), 𝑧′(𝑢))𝑇 𝜇𝑛𝜇 ≡ 0, 𝑛𝜇𝑛𝜇 ≡ 1 (3-19)

Its easily solved that 𝑛𝜇 = 𝑧√
𝑡 ′2+𝑧′2

(−𝑧′, 𝑡′)
Rewrite 𝑔𝜇𝜈 as follows,

𝐾 ≡ 𝑔𝜇𝜈∇𝜇𝑛𝜈 = (𝑇
𝜇𝑇 𝜈

𝑇2 + 𝑛𝜇𝑛𝜈)∇𝜇𝑛𝜈 (3-20)

Since ∇𝜇 |𝑛|2 = 2𝑛𝜈∇𝜇𝑛𝜈,∇𝜇 |𝑛|2 = 0, we have

𝐾 =
𝑇 𝜇𝑇 𝜈

𝑇2 ∇𝜇𝑛𝜈

=
𝑇 𝜈

𝑇2

(
𝑇 𝜇𝜕𝜇𝑛𝜈 − 𝛤𝜌

𝜇𝜈𝑛𝜌𝑇
𝜇
)

Since 𝑇 𝜇 = (𝜕𝑢𝑡, 𝜕𝑢𝑧) and we can write 𝑇 𝜇𝜕𝜇 as 𝜕𝑢 which would be helpful in future to
simplify our expression.

1. Calculate 𝑇𝜈

𝑇2 𝜕𝑢𝑛𝜈 part
Under Poincare Coordinate, our metric is as follows, which can be used to lower the index

of 𝑛𝜇 = 𝑧√
𝑡 ′2+𝑧′2

(−𝑧′, 𝑡′)

𝑑𝑠2 =
𝑑𝑡2 + 𝑑𝑧2

𝑧2 (3-21)

And we’ll have 𝑛𝜈 = 1
𝑧
√

𝑡 ′2+𝑧′2
(−𝑧′, 𝑡′)

Since 𝑇 𝜇 = (𝑡′, 𝑧′), Then we have

𝑇2 = 𝑔𝜇𝜈𝑇
𝜇𝑇 𝜈 =

1
𝑧2 (𝑡

′2 + 𝑧′2) (3-22)

Together we have

𝑇 𝜈𝜕𝑢𝑛𝜈 =
𝑧′𝑡′′ − 𝑡′𝑧′′

𝑧
√
𝑡′2 + 𝑧′2

(3-23)

And we’ll arrive
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𝑇 𝜈

𝑇2 𝜕𝑢𝑛𝜈 = 𝑧
𝑧′𝑡′′ − 𝑡′𝑧′′
(𝑡′2 + 𝑧′2)3/2 (3-24)

2. Christoffels Part
Now dealing with Christoffels, it can be computed from the metric that

−𝛤 𝑡
𝑡 𝑧 = −𝛤 𝑡

𝑧𝑡 = 𝛤
𝑧
𝑡𝑡 = −𝛤 𝑧

𝑧𝑧 =
1
𝑧

(3-25)

Putting them back in the 𝐾 formula

𝛤𝜌
𝜇𝜈𝑛𝜌𝑇

𝜇𝑇 𝜈 = 2𝛤 𝑡
𝑡 𝑧𝑛𝑡𝑇

𝑡𝑇 𝑧 + 𝛤 𝑧
𝑡𝑡𝑛𝑧𝑇

𝑡𝑇 𝑡 + 𝛤 𝑧
𝑧𝑧𝑛𝑧𝑇

𝑧𝑇 𝑧

= −2
𝑧

−𝑧′

𝑧
√
𝑡′2 + 𝑧′2

𝑡′𝑧′ + 1
𝑧

𝑡′

𝑧
√
𝑡′2 + 𝑧′2

𝑡′2 − 1
𝑧

𝑡′

𝑧
√
𝑡′2 + 𝑧′2

𝑧′2

=
1

𝑧3
√
𝑡′2 + 𝑧′2

(2𝑧′2𝑡′ + 𝑡′3 − 𝑧′2𝑡′)

=
1

𝑧3
√
𝑡′2 + 𝑧′2

(𝑧′2𝑡′ + 𝑡′3)

Combine those parts together with correct sign, we’ll arrive

𝐾 =
𝑡′(𝑡′2 + 𝑧′2 + 𝑧𝑧′′) − 𝑧𝑧′𝑡′′

(𝑡′2 + 𝑧′2)3/2 (3-26)

Under limit of 𝜖 → 0 we’ll claim that 𝑧 � 𝜖𝑡′. Putting it back and save the leading term
𝜖2 we have

𝐾 = 1 + 𝜖2 2𝑡′𝑡′′′ − 3𝑡′′2

2𝑡′2
≡ 1 + 𝜖2Sch(𝑡 (𝑢), 𝑢) + O(𝜖4) (3-27)

Neglecting the field independent divergent term, we’ll see the near 𝐴𝑑𝑆2 bounday is gov-
erned by the dynamic of Schwarzian action. And the effective action for JT gravity near it
boundary has the form of

𝐼𝐽𝑇 = − 1
8𝜋𝐺𝑁

∫
𝑑𝑢𝜙𝑟 (𝑢)Sch(𝑡 (𝑢), 𝑢) (3-28)

with notation following[14] where 𝑆 means Sch and 𝜙𝑟 (𝑢) is a source for the operator dual
to the dilaton. We can see that we have the same effective action as SYK in above.
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3.3 Important Mathematic Properties For Schwarzian

Before solving the EOM of Schwarzian to discover the dynamic of the system, we’ll
consider the mathematical propertiesd of Schwarzian at first.

3.3.0.1 Comfosition law

It can be verified directly use mathematica in Appendix C that when we compose the
reparametrization mode 𝑓 → 𝑓 ◦ 𝑔,

Sch( 𝑓 ◦ 𝑔, 𝑡) = 𝑔′2Sch( 𝑓 , 𝑔) + Sch(𝑔, 𝑡). (3-29)

This property would be helpful in deriving following finite temperature transformation.

3.3.0.2 Finite Temperature Transformation:

Since we are discussing in Euclidean time, and the period of time can be considered as
the inverse of temperature. Given transformation between 𝜏(𝑢) and 𝑡 (𝑢) as follows: 𝑡 (𝑢) =
tan 𝜏 (𝑢)

2 where 𝜏 ∈ [− 𝜋
2 ,

𝜋
2 ). It can be considered as a finite temperature transformation

since it maps infinite Euclidean time 𝑡 to finite time 𝜏. It can also be seen as changing the
Euclidean time to Rindler time, where the periodicity is involved to get rid of the conical
singularity[22].This transformation also builds the bridge between Poincare coordinate and
Rindler coordinate.

We can represent 𝑡 (𝑢)’s Schwarzian by using Schwarzian of 𝜏(𝑢), which can be easily
checked.

Sch(𝑡 (𝑢), 𝑢) = Sch(𝜏(𝑢), 𝑢) + 1
2
𝜏′2 (3-30)

We can therefore write our action in terms of Rindler Coordinate, which helps in discov-
ering BH physics.

𝐼𝑏𝑑𝑦 = −𝐶
∫
𝑑𝑢

[
Sch(𝜏, 𝑢) + 1

2
𝜏′2

]
(3-31)

𝐶 is a constant determined by the given scenario.

3.3.0.3 𝑆𝐿 (2,R)

symmetry: We have seen in SYK case that Schwarzian action preserves the symmetry af-
ter the conformal symmetry breaks down. However, the conformal symmetry does not breaks
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in to ashes, there are still 𝑆𝐿 (2,R) symmetry alive. We can easily check using Mathematica
in Appendix C that when we are doing 𝑡 (𝑢) = 𝑎𝑡 (𝑢)+𝑏

𝑐𝑡 (𝑢)+𝑑 with 𝑎𝑑 − 𝑏𝑐 ≡ 1 would preserve
the form of Schwarzian. The 𝑆𝐿 (2,R) condition would restrict the integration measure un-
changed.

3.4 EOM of Schwarzian

We have already seen from above that in near boundary region for JT gravity and in the
region away from conformal sector, both of them has the same effective description as the
Schwarzian action. Actually, we’ll soon going to see that its not a coincidence. Schwarzian
action serve as the simplest form that preserve 𝑆𝐿 (2,R) symmetry. There are also a lot of
discussion over Schwarzian and the redundancy it carries on needs to be gauged according to
the discussion in[21]. However, we don’t need to worry about those at present. In this section,
we’ll discuss the dynamics and mathematical properties of Schwarzian action. Following
discussion can be mainly found in[21][14].

3.4.1 Equation of motion Schwarzian action

EOM (equation of motion) can be easily calculated in most cases, using Euler-Lagrange
eqn. However, it needs the assumption that L contains field derivative up two second time.
However, we can see Sch has derivative up to third time. Therefore we need to dervive the
EOM from variation principle. We’ll do variation over 𝑡 (𝑢)
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∫
𝜙Sch(𝑡 (𝑢), 𝑢) =

∫
𝜙

(
𝑡′′

𝑡′
− 3

2

(
𝑡′′

𝑡′

)2
)

=
∫
𝜙′

(
𝑡′′

𝑡′

) ′
− 𝜙1

2

(
𝑡′′

𝑡′

)2

= −
∫
𝜙′
𝑡′′

𝑡′
+ 𝜙1

2

(
𝑡′′

𝑡′

)2

=
∫
−

[
𝜙′ · 𝛿𝑡

′′

𝑡′
− 𝜙′ 𝑡

′′

𝑡′2
𝛿𝑡′ + 𝜙𝑡

′′𝛿𝑡′′

𝑡′2
− 𝜙𝑡

′′2

𝑡′3
𝛿𝑡′

]
=

∫
−

[
𝛿𝑡′′ ·

(
𝜙′

𝑡′
+ 𝜙 𝑡

′′

𝑡′2

)
− 𝛿𝑡′ ·

(
𝜙′
𝑡′′

𝑡′2
+ 𝜙𝑡

′′2

𝑡′3

)]
=

∫
−

[(
𝜙′

𝑡′
+ 𝜙 𝑡′′

(𝑡′)2

) ′′
+

(
𝜙′
𝑡′′

𝑡′2
+ 𝜙𝑡

′′2

𝑡′3

) ′]
𝛿𝑡

= −
∫ [(

𝜙′𝑡′

(𝑡′)2

) ′′
+

(
𝑡′′

𝑡′3
(𝜙𝑡′)

) ′]
𝛿𝑡

= −
∫ [(

(𝜙𝑡′)′
𝑡′2

) ′
+

(
𝑡′′

𝑡′3
(𝜙𝑡′)′

)] ′
𝛿𝑡

Dealing with the integrand and strip the total derivative. Denote (𝜙𝑡′)′ ≡ 𝑋 for conve-
nience.

(
𝑋

𝑡′2

) ′
+ 𝑡

′′

𝑡′3
𝑋 =

𝑡′2𝑋 ′ − 2𝑡′𝑡′′𝑋
𝑡′4

+ 𝑡
′′

𝑡′3
𝑋

=
1
𝑡′2
𝑋 ′ − 𝑡′′

𝑡′3
𝑋

=
1
𝑡′

(
𝑋

𝑡′

) ′
=

1
𝑡′

(
(𝑡′𝜙)′
𝑡′

) ′
Therefore the equation of motion for Schwarzian action is[

1
𝑡′

(
(𝑡′𝜙𝑟 )′
𝑡′

) ′] ′
= 0 (3-32)

3.4.2 Different Form Of Schwarzian EOM

In 𝐼 =
∫
𝜙Sch(𝑡 (𝑢), 𝑢) discussed above, constant 𝜙 is the type of action we’ll mainly

discuss about. We would derive reparametrization mode as the dynamic of the system by

23



Chapter 3 JT & SYK 上海交通大学学士学位论文

asking
𝛿𝐼

𝛿𝑡 (𝑢) = 0 (3-33)

Therefore we are looking for

𝛿Sch
𝛿𝑡

=
𝛿Sch
𝛿𝑢

𝛿𝑡
𝛿𝑢

=
Sch′

𝑡′
= 0 (3-34)

And that means we are looking for Sch(𝑡 (𝑢), 𝑢) = const.
Using composition law can easily verify that if 𝜏(𝑢) is linear in 𝑢, Schwarzian is constant.

This result satisfies as a special solution for Schwarzian Action.
Since 𝑢 is time on the boundary and it would also be periodic if 𝜏 is linear in 𝑢. Since 𝜏

is Rindler time and in periodic of 2𝜋. We would set the time periodic of boundary as 𝛽 and
a simple relation between 𝜏 and 𝑢 satisfying EOM of Schwarzian would be

𝜏(𝑢) = 2𝜋
𝛽
𝑢 (3-35)

and Schwarzian would be

𝐼Sch = −2𝜋2𝐶
1
𝛽
, 𝐶 =

𝜙𝑟
8𝜋𝐺𝑁

. (3-36)
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Chapter 4 JT Gravity, SYK, and MQ model

We have found that the JT/SYK model has a duality in the infrared region. When we
consider the JT gravity in 𝐴𝑑𝑆2 space, there are two boundaries, which should correspond
to two decoupled SYK systems. Gravity side, introducing a coupling in the JT gravity can
violate the Average Null Energy Condition (ANEC) and form a traversable wormhole. The
corresponding SYK systems, on the field theory side, should also introduce two-sided cou-
pling. This chapter describes the corresponding IR dynamics, and we will find that they
exhibit consistent behavior when using different units for 𝑢. Our discussion in this chapter
focuses on building the correspondence between the gravity side and the field theory side. A
detailed discussion on its dynamics is saved to the next chapter.

4.1 Gravity side

Before delving into a detailed discussion of JT gravity on two boundaries, we must first
review the geometry 𝐴𝑑𝑆2. Subsequently, we will calculate the mathematical process of in-
troducing coupling to achieve a traversable wormhole and obtain the IR action on the gravity
side. As for the violation of ANEC due to the introduction of coupling, we will not elaborate
much on this here; for more details, refer to[23].

4.1.1 2D Space, Time and Coordinate

When we previously derived JT gravity, we used Poincaré time and boundary time in
description, which belong to different coordinate systems. We only roughly described that
there can be a certain mapping relationship between the two, but we did not specify the exact
impact of the reparameterization of boundary time on Poincaré time. Moreover, the 𝐴𝑑𝑆2

spacetime has more than one boundary. Therefore, before further discussing the dynamics,
it is necessary to carefully discuss the coordinate system of 𝐴𝑑𝑆2.

Coordinates on 𝐴𝑑𝑆2

The Penrose diagram of 𝐴𝑑𝑆2 has two boundaries. To obtain the transformations be-
tween different coordinate systems of this spacetime, we need to introduce the discussion of
embedding coordinates to derive the relationship between global and Poincaré coordinates.
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Relevant content is referenced from[24].
𝐴𝑑𝑆2 , a curved spacetime, can be regarded as a hypersurface embedded in a three-

dimensional flat spacetime with the metric (−1,−1, 1):

−𝑌 2
−1 − 𝑌 2

0 + 𝑌 2
1 = − 1

𝜇2 ,

𝑑𝑠2 = −𝑑𝑌 2
−1 − 𝑑𝑌 2

0 + 𝑑𝑌 2
1 .

It satisfies 𝑅 = −2𝜇2. Since the action in JT gravity shows that we are discussing a
spacetime with 𝑅 = −2, we choose 𝜇 = 1 here, and we will substitute 𝜇 = 1 into the
discussion at the end.

Global Coordinate
When we use the following transformations, we obtain the Global Spacetime Coordinates

with 𝑥 ∈ [𝜎, 𝜋/𝜇], 𝑡 ∈ R:

𝑌−1 =
1
𝜇

cos(𝜇𝑡)
sin(𝜇𝜎) ,

𝑌0 =
1
𝜇

sin(𝜇𝑡)
sin(𝜇𝜎) ,

𝑌1 =
1
𝜇

cot(𝜇𝜎),

𝑑𝑠2 =
1

sin2(𝜇𝜎)
(−𝑑𝑡2 + 𝑑𝜎2).

Poincaré Coordinate
When we use the following transformations, we obtain the Poincaré Coordinates, with

𝑥 ∈ (−∞, 0), 𝑡 ∈ R:

𝑌−1 = − 1
2𝜇

(
1
𝜇𝑥

+ 𝜇𝑥
)
+ 𝑡2

2𝑥
,

𝑌0 = − 𝑡

𝜇𝑥
,

𝑌1 = − 1
2𝜇

(
1
𝜇𝑥

− 𝜇𝑥
)
− 𝑡2

2𝑥
,

𝑑𝑠2 =
1
𝜇2𝑥2 (−𝑑𝑡

2 + 𝑑𝑥2).
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Rindler Coordinate
When we use the following transformations, we obtain the Rindler coordinates:

𝑌−1 =
1
𝜇

cosh(𝜇𝜌),

𝑌0 =
1
𝜇

sinh(𝜇𝜌) sinh(𝜇𝑡𝑅),

𝑌1 =
1
𝜇

sinh(𝜇𝜌) cosh(𝜇𝑡𝑅),

𝑑𝑠2 = − sinh2(𝜇𝜌) 𝑑𝑡2𝑅 + 𝑑𝜌2.

We can easily see that when discussing boundary behaviors, we encounter divergences
in the above coordinate systems. Therefore, we need to use the projective coordinates 𝑋𝑀

to describe them instead. 𝑋𝑀 is a projection modification of the above 𝑌𝑀 coordinates. We
require 𝑔𝑀𝑁𝑋

𝑀𝑋𝑁 = 0 and 𝑋𝑀 ∼ 𝜆𝑋𝑀 .
Global Coordinate @ Boundary

𝑋−1 ∼
1
𝜇

cos(𝜇𝑡),

𝑋0 ∼
1
𝜇

sin(𝜇𝑡),

𝑋1 ∼
1
𝜇

cos(𝜇𝜎).

It can be verified that this satisfies the requirements of the projective coordinates. Substi-
tuting 𝜇 = 1 and considering 𝜎 = 0, 𝜋 to obtain 𝑡𝑙 and 𝑡𝑟 , we obtain the relationship between
the embedding coordinates and the global coordinates.

𝑒𝑖𝑡𝑟 = 𝑋−1 + 𝑖𝑋0, for 𝑋1 = 1,
𝑒𝑖𝑡𝑙 = 𝑋−1 + 𝑖𝑋0, for 𝑋1 = −1.

Poincaré Coordinate @ Boundary
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𝑋−1 = − 1
2𝜇

(
1
𝜇
+ 𝜇𝑥2

)
+ 𝑡

2

2
,

𝑋0 = − 𝑡
𝜇
,

𝑋1 = − 1
2𝜇

(
1
𝜇𝑥2 − 𝜇𝑥

)
− 𝑡

2

2
,

Thus, we obtain the relationship between the embedding coordinates and the Poincaré
coordinates:

𝑋0

𝑋−1 + 𝑋1
= 𝑡𝑝 (4-1)

Rindler Coordinate @ Boundary

𝑋−1 =
1
𝜇

coth(𝜇𝜌),

𝑋0 =
1
𝜇

sinh(𝜇𝑡𝑅),

𝑋1 =
1
𝜇

cosh(𝜇𝑡𝑅),

It satisfies 𝑋 ·𝑋 = 0. Also, one should notice when reaching 𝜌 → ∞, 𝑋−1 = lim
𝜌→∞

coth(𝜌) =
1. Thus, we obtain the relationship between the embedding coordinates and the Rindler co-
ordinates as follows:

𝑒𝑡𝑅 = 𝑋1 + 𝑋0, for 𝑋−1 = 1 (4-2)

Therefore, the transformation relations between the global time, Rindler time, and Poincaré
time of the 𝐴𝑑𝑆2 space are as follows:

𝑋0

𝑋−1 + 𝑋1 = 𝑡𝑃 = tan
𝑡𝑟
2
= − 1

tan 𝑡𝑙
2
= tanh

𝑡𝑅
2

(4-3)

Proof:
When 𝑋1 = ±1, we have

cos(𝑡𝑙,𝑟 ) = 𝑋−1 and sin(𝑡𝑙,𝑟 ) = 𝑋0. (4-4)

Substituting them into the embedding coordinate expression of 𝑡𝑃, we obtain

𝑡𝑃 =
𝑋0

𝑋−1 + 𝑋1 =
cos(𝑡𝑙,𝑟 )

sin(𝑡𝑙,𝑟 ) ± 1
= tan

( 𝑡𝑟
2

)
= − 1

tan
( 𝑡𝑙

2

) . (4-5)
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When we are looking at Rinder coordinate, we have the following identity:

−12 − (𝑋0)2 + (𝑋1)2 = 0 ⇒ (𝑋1 + 𝑋0)(𝑋1 − 𝑋0) = 1. (4-6)

By substituting 𝑋1 and 𝑋0 of Rindler coordinate into above equation, we get

𝑒𝑡𝑅 = 𝑋1 + 𝑋0 therefore 𝑒−𝑡𝑅 =
1

𝑋1 + 𝑋0 = 𝑋1 − 𝑋0. (4-7)

Solving these equations yields

𝑋1 = cosh(𝑡𝑅) and 𝑋0 = sinh(𝑡𝑅). (4-8)

Finally, substituting them in expression for 𝑡𝑃 we arrive at

𝑡𝑃 = tanh
( 𝑡𝑅

2

)
𝑄𝐸𝐷. (4-9)

Remark: Those relationships are of great significance for the subsequent discussion of
Physical Dynamics!.

Remember that when we derived the JT gravity with the raising and lowering of indices,
we used the metric corresponding to the Poincaré metric. We denote the time in JT gravity
as 𝑡𝑃, and 𝑢 is the boundary time. Physical meaning of the reparameterization mode 𝑡𝑃 (𝑢)
is a mapping between the boundary time and the interior Poincaré time. And the effective
action is given by

𝑆 = −𝜙𝑟
∫
{𝑡𝑃 (𝑢), 𝑢}𝑑𝑢 (4-10)

In Chapter 3, we discussed in Euclidean signature, one solution obtained is 𝜏 = 2𝜋
𝛽
𝑢.

The dynamics we are discussing now uses the Lorentzian signature, so we need to perform
a Wick rotation to obtain the desired result. Based on the previously discussed relationship
between 𝑡𝑅 and 𝑡𝑃, we can obtain

𝑡𝑃 = tanh
𝑡𝑅 (𝑢)

2
= tanh

𝜋𝑢

𝛽
(4-11)

4.1.2 Dynamics of JT gravity in 𝐴𝑑𝑆2

When spacetime has two boundaries, we have two sets of mappings. According to the
analysis of JT gravity, dynamics only exist on the boundaries. Therefore, when we describe
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the dynamics of the system, we should have two copies of Schwarzian, which is Sch𝐿+Sch𝑅
[6].

We aim to construct a traversable wormhole, so we need to introduce a coupling term on the
two boundaries[23],[6]. Whether this construction can give rise to an eternal traversable worm-
hole is a relatively more complex topic, which only slightly mentioned in the next chapter.
The setup here is to introduce the coupling term[6][23]

𝑆int = 𝑔
𝑁∑
𝑖=1

∫
𝑑𝑢 𝑂𝑖

𝐿 (𝑢)𝑂𝑖
𝑅 (𝑢) (4-12)

where 𝑂 (𝑢) is a bulk operator of dimension 𝛥, evaluated at the boundary. We choose
the coupling 𝑔 and 1

𝑁
as small quantities, but keep 𝑁𝑔 fixed, similar to the general AdS/CFT

settings. Since 𝑔 is a small quantity, we can use the following approximation:

〈
𝑒𝑖𝑔

∑
𝑖

∫
𝑑𝑢𝑂𝑖

𝐿 (𝑢)𝑂
𝑖
𝑅 (𝑢)

〉
∼ 𝑒𝑖𝑔

∑
𝑖

∫
𝑑𝑡 〈𝑂𝑖

𝐿 (𝑢)𝑂
𝑖
𝑅 (𝑢) 〉 (4-13)

This approximation arises from the fact that in large 𝑁 theories, the ladder diagram is
the leading contribution, but we will not discuss these Feynman diagrams in detail here. We
choose the normalized form of the two-point function as follows. If we reparameterize the
two-point function with 𝑡 ⇒ 𝑡, we obtain the following relation:

〈𝑂 (𝑡1𝑃)𝑂 (𝑡2𝑃)〉 = |𝑡1𝑃 − 𝑡2𝑃 |−2𝛥 ⇒
(𝑡′1𝑡′2)𝛥

|𝑡1 − 𝑡2 |2𝛥
(4-14)

Using the previously discussed relationship between 𝑡𝑃 and 𝑡𝑙,𝑟 , we can express the single
interaction term in the large 𝑁 limit using the boundary dynamical modes. Specifically, by
substituting 𝑡𝑃 = tan

( 𝑡𝑟
2

)
= − 1

tan( 𝑡𝑙
2 )

, we obtain

〈𝑂 (𝑡1𝑃)𝑂 (𝑡2𝑃)〉 =
1

22𝛥

(
𝑡′𝑙 (𝑢)𝑡′𝑟 (𝑢)

cos2 𝑡𝑙 (𝑢)−𝑡𝑟 (𝑢)
2

)𝛥
(4-15)

Including the factor of 𝑔
∑
𝑖

and dynamics on each boundary, we get the complete action
on the JT gravity side as follows:

𝑆 =
∫
𝑑𝑢

−𝜙𝑟
{
tan

𝑡𝑙 (𝑢)
2
, 𝑢

}
− 𝜙𝑟

{
tan

𝑡𝑟 (𝑢)
2

, 𝑢

}
+ 𝑔𝑁

22𝛥

(
𝑡′𝑙 (𝑢)𝑡′𝑟 (𝑢)

cos2 𝑡𝑙 (𝑢)−𝑡𝑟 (𝑢)
2

)𝛥 (4-16)
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4.2 Field Theory Side

We are going to obtain a similar action to eqn 4-16 , which is pretty easy by replacing the
correct reparametrization mode. However, we are going to set up the discussion on the SYK
side from its basement. Here, we will first discuss why we often refer to 𝑇𝐹𝐷 later on, and
how its construction is very similar to that of the Keldysh SYK. Based on 𝑇𝐹𝐷, we construct
the SYK𝐿,𝑅 that we need, and then discuss the IR dynamics after introducing the coupling
term, ultimately finding that it formally behaves consistently with the gravity side.

4.2.1 The Significance of TFD in Holographic Duality

To understand why we need to discuss TFD, we must recognize that JT gravity, as an
𝐴𝑑𝑆2 gravity, naturally possesses a two-sided black hole description. This is discussed in[25]

and[21] regarding the relationship between JT gravity and the two-sided black hole. In[26], it is
discussed that the field theory description corresponding to the Eternal Black hole (which has
the same spacetime structure as the two-sided black hole in 𝐴𝑑𝑆2) is the TFD state. Therefore,
when discussing the coupled SYK and its holographic duality properties, we should start from
the TFD state. •

As for the discussion of the two-sided black hole in JT gravity, it will not be reiterated
here; the connection between the Eternal Black hole and the TFD state can be referred to in[22],
which provides some intuitive descriptions of the association between the eternal black hole
and TFD.

4.2.2 The Construction of TFD

The general construction of TFD is carried out in the following manner. Consider two
identical systems denoted as 𝐻1 and 𝐻2, with 𝛽 representing the time period and 𝑍 (𝛽) being
the partition function of the system. The TFD state can be written as

|𝑇𝐹𝐷〉 ≡ 1√
𝑍 (𝛽)

∑
𝑛

𝑒−𝛽𝐸𝑛/2 |𝑛〉1 |𝑛〉2 (4-17)

We assume the total Hamiltonian of the system to be 𝐻𝑡𝑜𝑡 = 𝐻1 −𝐻2, and it can be observed
that the TFD state does not evolve with time.

|𝑇𝐹𝐷 (𝑡)〉 =
∑
𝑛

𝑒−𝛽𝐸𝑛/2𝑒−𝑖 (𝐻1−𝐻2 ) |𝑛〉1 |𝑛〉2 = |𝑇𝐹𝐷〉 (4-18)
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In the SYK case we are considering, we define TFD state in a similar way.

|𝑇𝐹𝐷𝛽〉 ≡ 𝑍−1/2
𝛽 𝑒−𝛽 (𝐻𝐿+𝐻𝑅 ) |𝐼〉 (4-19)

When we take 𝛽 → 0, we obtain a natural interpretation of |𝐼〉 as the infinite temperature
TFD state. Also, the chosen total Hamiltonian of the system is 𝐻𝐿 − 𝐻𝑅. To ensure that |𝐼〉
is time translationally invariant, we must require:

(𝐻𝐿 − 𝐻𝑅) |𝐼〉 = 0 (4-20)

We still have many choices for |𝐼〉. If we demand that |𝐼〉 is the ground state annihilated by
𝑓 𝑖 ≡ 𝜓𝑖

𝐿+𝑖𝜓
𝑖
𝑅√

2
, then we have following result. (Similar result would also be derived in Choi-

Jamiolkowski isomorphism, seen in chapter 7 for detailed discussion) Since the combination
of majorana fermions gives dirac fermioins, |𝐼〉 can be seen as a ground stated defined by
annihilating of dirac fermions. (

𝜓 𝑗
𝐿 + 𝑖𝜓 𝑗

𝑅

)
|𝐼〉 = 0 (4-21)

Although we set 𝐻 as the Hamiltonian of a copy of the SYK system, which has the following
form, 𝐻 is not fully fixed because the sign of its coupling has a Z2 redundancy.

𝐻 = (𝑖)𝑞/2
∑

1≤ 𝑗1≤ 𝑗2 · · ·≤ 𝑗𝑞

𝐽 𝑗1 𝑗2 · · · 𝑗𝑞𝜓
𝑗1𝜓 𝑗2 · · ·𝜓 𝑗𝑞 〈𝐽2

𝑗1 · · · 𝑗𝑞〉 =
2𝑞−1J 2(𝑞 − 1)!

𝑞𝑁𝑞−1 , J =

√
𝑞𝐽

2
𝑞−1

2

(4-22)
We can see that if we set 𝐽𝑅· · · = (−1) 𝑞

2 𝐽𝐿· · ·, then we’ll have 𝐻𝑅 = (−1) 𝑞
2 𝐻𝐿. And we can

see it is a ground state of decoupled SYK system. Disregarding those exponential factors
which can be commuted by 𝐻𝐿 −𝐻𝑅 , we can act 𝐻𝐿 −𝐻𝑅 on |𝐼〉). And we see that the time
translational invariance of |𝐼〉, |𝑇𝐹𝐷〉 is satisfied.

𝐻𝐿 − 𝐻𝑅 |𝐼〉 = 𝐻𝐿 −
∑

𝐽𝑅𝑗1 · · · 𝑗𝑞𝜓
𝑗1
𝑅 · · ·𝜓 𝑗𝑞

𝑅 |𝐼〉
= (1 − (−1)

𝑞
2 · (−𝑖)𝑞) × 𝐻𝐿 |𝐼〉

= 0

(4-23)

4.2.3 The Construction of 𝐻𝑡𝑜𝑡𝑎𝑙

Similar to the discussion in JT gravity, we introduce an interaction term with a small cou-
pling coefficient 𝜇 in the doubled SYK, and ultimately obtain an effective action consistent
with JT gravity in different units.

𝐻total = 𝐻L,SYK + 𝐻R,SYK + 𝐻int , 𝐻int = 𝑖𝜇
∑
𝑗

𝜓 𝑗
𝐿𝜓

𝑗
𝑅 (4-24)
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Figure 4-1 The overlap |〈𝑇𝐹𝐷 |𝐺〉| for 𝑁 = 4, 8, 12, 16 Majorana fermions per site.

One should be aware that 𝜓2 = 1
2 here instead of 0 shwon in chapter 2. The reason is that

we have already introduced the quantization condition {𝜓𝑖
𝑎 (𝑡), 𝜓

𝑗
𝑏 (𝑡)} = 𝛿𝑎𝑏𝛿𝑖 𝑗 for discussion

over energy. Related discussion on quantization condition can also be seen in Appendix B.
It is claimed that |𝐼〉 is the ground state of 𝐻𝑖𝑛𝑡 and 𝐻𝑡𝑜𝑡•. And we have

𝑖𝜇
∑

𝜓(𝜏)𝑖𝐿𝜓(𝜏)𝑖𝑅 |𝐼〉 = −𝜇
∑

𝜓(𝜏)𝑖𝐿𝜓(𝜏)𝑖𝐿 |𝐼〉 = −𝜇𝑁
2

.
However, [𝐻𝑖𝑛𝑡 , 𝑒

−𝛽 (𝐻𝐿+𝐻𝑅 )] ≠ 0. Luckily, we are discussing interaction with 𝜇 � 1,
and we can think that the ground state |𝐺〉 of 𝐻𝑡𝑜𝑡𝑎𝑙 is approximately |𝑇𝐹𝐷𝛽〉, and the value
of 𝛽 = 𝛽(𝜇) can be solved by minimizing the energy. As for how close it would be, would
not be discussed in this paper. We only show the result in [6].

4.2.3.1 Discussion on TFD state and ground state

Giving 𝑁 and 𝑞, the Hamiltonian can be constructed using iteration method mentioned
in[14] and appendix in[27]. Therefore we would have a matrix representation of the total Hamil-
tonian. Through diagonalization we can obtain the energy and corresponding eigenstate |𝑛〉
of single SYK system. Therefore, we can construct |𝑇𝐹𝐷〉 defined in eqn 4-17 as follows.

On the other hand, manipulation over Hamiltonian in matrix representation can give us
the description |𝐺〉. Therefore those two states are comparable numerically.

As for why bother using TFD state. Since it is as convenient as vaccum state, nor ground
state. One of the reason is briefly mentioned in the beginning of this section. Now we are
going to elaborate this point a little bit clearly. In[26], it is mentioned TFD is dual to eternal
black hole, or eternal black hole shown in figure 4-2.
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Figure 4-2 Penrose diagram of eternal black hole[23]

A naive way for understanding : We draw two black holes on a single diagram to describe
the entanglement between the two black holes. The perturbation of the spacetime geometry
allows us to send a signal from one black hole to the other in a decoupled system. However,
when we do not perform a double trace deformation, we cannot obtain any information by
observing just one of the black holes. The corresponding field theory description is that
taking the partial trace of |𝑇𝐹𝐷〉 results in a maximally entangled state with no information
decoded.

4.2.4 Low Energy Region and Schwarzian

For this system, there are several interesting small parameters in the region under con-
sideration. Specifically, in the decoupled system, it is believed that conformal symmetry is
exhibited when energy � 𝐽. In the coupled system, another small coupling 𝜇 is introduced.
Both of them are small, making it tricky in perturbation theory. Here, we believe that the
expansion of these two small quantities can be handled in the following way: using pertur-
bation theory to describe 𝐻𝑖𝑛𝑡 in conformal region. The specific low-energy description is as
follows:

• 𝐻SYK is described by the Schwarzian Action.
• 𝐻𝑖𝑛𝑡 is approximated to 〈𝐻𝑖𝑛𝑡〉 in the same way as the JT gravity part
Following above agreements, we can use the conformal approximation to obtain 〈𝜓𝐿 (𝑡𝐿𝑃)𝜓𝑅 (𝑡𝑅𝑃)〉

shown in 𝐻𝑖𝑛𝑡 . Though we expanded 𝐺 (𝑡1, 𝑡2) in terms of 𝑡12 and kept the leading term in
our discussion of the Schwarzian, It is suppressed by the 𝑔 factor in 𝐻𝑖𝑛𝑡 . We’ll just leave it
there with no expansioin on 𝑡12. Moreover, we adopt the same time reparametriization mode
as gravity side: 𝑡𝑃 = tan 𝑡𝑟

2 , 𝑡𝑃 = − 1
tan 𝑡𝑙

2
.

Since 〈𝜓(𝜏1)𝜓(𝜏2)〉conformal = 𝑐𝛥sgn(𝜏12) 𝑖
J|𝜏12 |2𝛥 is a conformal correlator in Euclidean
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space, we can use wick rotation and the above reparametrization mode to derive 〈∑
𝑗
𝜓 𝑗

𝐿 (𝑡𝑙)𝜓
𝑗
𝑅 (𝑡𝑟 )〉

∵sgn(tan
𝑎

2
+ 1

tan 𝑏
2

) = 1


1

(tan 𝑎
2 + 1

tan 𝑏
2
)2


𝛥 [

1
cos2 𝑎

2 · sin2 𝑏
2

− 1
4

]𝛥
=

[
1

4 cos2
(
𝑎−𝑏

2

) ]𝛥
∴〈𝜓𝐿 (𝑡𝐿𝑃)𝜓𝑅 (𝑡𝑅𝑃)〉 = 𝑐𝛥

𝑖

[2J cos 𝑡𝐿𝑃−𝑡𝑅𝑃
2 ]2𝛥

The final result is

𝑆 = 𝑁
∫
𝑑𝑢

{
−𝛼𝑆

J

({
tan

𝑡𝑙 (𝑢)
2
, 𝑢

}
+

{
tan

𝑡𝑟 (𝑢)
2

, 𝑢

})
+ 𝜇 𝑐𝛥

(2J)2𝛥

[
𝑡′𝑙 (𝑢)𝑡′𝑟 (𝑢)

cos2 𝑡𝑙 (𝑢)−𝑡𝑟 (𝑢)
2

]}
(4-25)

Here we’ll give the united form of dynamics both for JT and SYK

𝑆 = 𝑁
∫
𝑑𝑢̃

−
({

tan
𝑡𝑙 (𝑢̃)

2
, 𝑢̃

}
+

{
tan

𝑡𝑟 (𝑢̃)
2

, 𝑢̃

})
+ 𝜂

[
𝑡′𝑙 (𝑢̃)𝑡′𝑟 (𝑢̃)

cos2 𝑡𝑙 (𝑢̃)−𝑡𝑟 (𝑢̃)
2

]𝛥 (4-26)

𝑢̃ ≡ J
𝛼𝑆

𝑢 =
𝑁

𝜙𝑟
𝑢 , 𝜂 ≡ 𝜇𝛼𝑆

J
𝑐𝛥

(2𝛼𝑆)2𝛥 =
𝑔

22𝛥

(
𝑁

𝜙𝑟

)2𝛥−1

(4-27)

How to solve the system would be partly discussed in next section.
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Chapter 5 Continue Discussion on MQ Model

We have already discussed how the low-energy effective action is derived in the MQ
model. Now, we need to discuss how to solve the low-energy effective action. We can find a
linear solution through a simple argument. More comprehensive solutions need a discussion
of gauge fixing. We will obtain a new set of effective actions describing the SYK solution
through gauge fixing, and after discussing these, we will further determine the expression
for 𝛽(𝜇) in |𝑇𝐹𝐷𝛽〉, as well as the low E, low temperature limit solutions. Finally, we will
verbally describe the different phases corresponding to the MQ model, without providing too
many detailed explanations on it, since the main focus of my subject is to solve Schwarzian
dynamics.

5.1 Linear Solution

Since 𝑆/𝑁 = Sch𝐿,𝑅 + int, and we have already discussed that the linear solution indeed
is a solution for the Schwarzian action in previous chapter. Here, we verify that the linear
solution is a solution for the whole action, under the gauge condition 𝑡𝑙 = 𝑡𝑟 that will be
discussed later.[21][6].

We’ll perform a variation on the interaction part to prove the above statement.

Variation:
𝛿𝑡′𝑙 𝑡

′
𝑟 + 𝑡′𝑙𝛿𝑡′𝑟
cos2 + 𝑡′𝑙 𝑡𝑟 cos−3 · sin ·(𝛿𝑡𝑙 − 𝛿𝑡𝑟 )

= −
(
𝑡′𝑟

cos2

) ′
𝛿𝑡𝑙 −

(
𝑡′𝑙

cos2

) ′
𝛿𝑡𝑟 + 𝑡′𝑙 𝑡′𝑟

sin
cos3 (𝛿𝑡𝑙 − 𝛿𝑡𝑟 )

= −
cos2 𝑡′′𝑟 + cos · sin ·(𝑡′𝑙 − 𝑡′𝑟 )𝑡′𝑟

cos4 𝛿𝑡𝑙 − (𝑙 ↔ 𝑟) + 𝑡′𝑙 𝑡′𝑟
sin
cos3 (𝛿𝑡𝑙 − 𝛿𝑡𝑟 )

= −
[
𝑡′′𝑟

cos2 + sin
cos3 (𝑡

′
𝑟 𝑡

′
𝑙 − 𝑡′2𝑟 − 𝑡′𝑙 𝑡′𝑟 )

]
𝛿𝑡𝑙

−
[
𝑡′′𝑙

cos2 + sin
cos3 (𝑡

′
𝑙 𝑡
′
𝑟 − 𝑡′2𝑙 + 𝑡′𝑙 𝑡′𝑟 )

]
𝛿𝑡𝑟

When we adopt the linear ansatz and ask 𝑡𝑙 (𝑢) = 𝑡𝑟 (𝑢), we have sin
( 1

2 (𝑡𝑙 − 𝑡𝑟 )
)
= 0, 𝑡′′𝑙,𝑟 =

0, and we can see that the variation is zero. This means that the linear ansatz indeed solves
the interaction part.
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5.2 Gauge Fixing

Here, we will not rigorously derive the origin of the conserved charge, but we will intro-
duce some aspects of where the 𝑆𝐿 (2) gauge symmetry in the Schwarzian comes from. For
related discussions, refer to[21][6].

However, it is worth noting why the interaction still preserves the 𝑆𝐿 (2) symmetry instead
of breaking it. It might be troublesom in deriving how this cos form is invariant over 𝑆𝐿 (2)
charge directly, since common 𝑆𝐿 (2) invariant form is following, and discussed in appendix
C. (

𝑡′1𝑡
′
2

sin2(𝑡1 − 𝑡2)

)
,

𝑡′1𝑡
′
2

(𝑡1 − 𝑡2)2 (5-1)

The interaction term in MQ model is originated from
(

𝑡 ′1𝑡
′
2

(𝑡1−𝑡2 )2

)𝛥
and we therefore believe

it possess 𝑆𝐿 (2) symmetry. Owing to the mapping of 𝐴𝑑𝑆2 coordinate, the specific trans-
formation needs to be modified, though we are not showing the specific form in this paper.

5.2.1 Gauge Freedom

In the study of gauge freedom in Schwarzian, we need to perform a diffeomorphism on
𝜏(𝑢) in Sch(tan( 𝜏 (𝑢)2 , 𝑢). Since we have linear ansatz for 𝜏 we can ask 𝑢 � 𝜏(𝑢) by using
proper 𝛽. After that, we’ll add perturbation 𝜖 (𝑢) with 𝜖 � 1 as diffeomorphism

𝜏(𝑢) = 𝑢 + 𝜀(𝑢) (5-2)

Putting them back in the Schwarzian, we would have

1
2
+ 𝜖 ′(𝑢) + 𝜖 ′′′(𝑢)

− 3
2
𝜖 ′′(𝑢)2 + 1

2
𝜖 ′(𝑢)2 − 𝜖 (3) (𝑢)𝜖 ′(𝑢)

− 2𝜖 ′′′(𝑢)𝜖 ′(𝑢)2 + 3𝜖 ′(𝑢)𝜖 ′′(𝑢)2 + ...

When we study the dynamics of 𝜖 (𝑢), we can throw away the contribution from 1
2 . Any

total derivative term would be canceled since we are dealing with integration on a periodic
boundary. Focusing on the leading order contribution, we have
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(
1
2
𝜀′2 − 1

2
𝜀′′2 − (𝜀′′𝜀′)′

)
(5-3)

And the effective action is

𝐼Sch =
𝐶

2

2𝜋∫
0

𝑑𝑢
(
𝜀′′2 − 𝜀′2

)
(5-4)

𝛿𝐼Sch = −𝐶𝛿𝜀′(𝜀′′′ + 𝜀′) (5-5)

The solution can be obtained as 𝜀 = (𝛼𝑒𝑖𝑢 + 𝛽𝑒−𝑖𝑢) + 𝛾. That’s the diffeomorphism
discussion on single SYK. When we consider the coupled SYK, we only need to focus more
on the interaction term to see what the diffeomorphism is for the whole action.

Since
1

cos2(𝜀) ∼ 1 + 𝑥2 (5-6)

𝑡′𝑙 𝑡
′
𝑟 → 𝑡′𝑙 𝑡

′
𝑟 (1 + 𝛿𝑡′𝑙 · 𝑡′𝑟 + 𝛿𝑡′𝑟 · 𝑡′𝑙 + O(𝜀2)) (5-7)

in order to keep the overall interaction variation at second-order perturbation and above,
we need to require that in the case of 𝑡𝑙 = 𝑡𝑟 , 𝛿𝑡′𝑙 · 𝑡′𝑟 + 𝛿𝑡′𝑟 · 𝑡′𝑙 = 0. Therefore, we can obtain
the following matching relationship. The matching relationship for the purple translation
transformation has not been proved yet.

𝛿𝑡𝑙 = 𝜀
0 + 𝜀+𝑒𝑖𝑡𝑙 + 𝜀−𝑒−𝑖𝑡𝑙 , 𝛿𝑡𝑟 = 𝜀

0 − 𝜀+𝑒𝑖𝑡𝑟 − 𝜀−𝑒−𝑖𝑡𝑟 (5-8)

5.2.2 Conserved Charge

To satisfy the gauge fixing condition, we need to satisfy all 𝑄 = 0 conditions. The
derivation of 𝑄 will not be discussed in more detail here; the following result comes from[6].

𝑄0/𝑁 = 𝑄𝑆
0 [𝑡𝑙] +𝑄𝑆

0 [𝑡𝑟 ] +
(
1
𝑡′𝑙
+ 1
𝑡′𝑟

)
𝐹,

𝐹 ≡ 𝛥𝜂

[
𝑡′𝑙 𝑡

′
𝑟

cos2 𝑡𝑙−𝑡𝑟
2

]𝛥
,

𝑄𝑆
0 [𝑡] = −𝑡′ + 𝑡

′′2

𝑡′3
− 𝑡

′′′

𝑡′2
,

𝑄± [𝑡] = · · ·
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We found that by setting 𝑡𝑙 (𝑢̃) = 𝑡𝑟 (𝑢̃), we can solve part of the gauge condition 𝑄± = 0.
By rewriting 𝜑 = log 𝑡′, we can reinterpret 𝑄0 as follows

0 = 𝑄0/𝑁 = −2𝑡′ + 2
(
𝑡′′2

𝑡′3
− 𝑡

′′′

𝑡′2

)
+ 2𝛥𝜂𝑡′2𝛥−1 (5-9)

= 2𝑒−𝜑
[
−𝜑′′ − 𝑒2𝜑 + 𝜂𝛥𝑒2𝛥𝜑] (5-10)

So the black part is the real constraint condition𝑄0 = 0, and through observation, we can
see above constraints is the EOM of the following action

𝑆/𝑁 =
∫
𝑑𝑢̃ ¤𝜑2 −𝑉 (𝜑) , 𝑉 = 𝑒2𝜑 − 𝜂𝑒2𝛥𝜑 (5-11)

When we consider the excitation states, we can need to modify the gauge condition on
𝑄0. This action eqn 5−11 is useful in describing gauging condition for Ground State. And it
is helpful in seeing the excitation behavior with analysis on𝑉 (𝜑), and helpful for us to derive
the behavior of energy gap.

We can see that
√

2𝜑 is a canonical variable, which we denote as 𝜑̃ Then we can write
the canonical form as ∫

𝑑𝑢̃

(
1
2
¤̃𝜑2 −

(
𝑒
√

2𝜑̃ − 𝜂𝑒
√

2𝛥𝜑̃
))

(5-12)

We can find that at 𝜑̃ = 𝜑̃𝑚 the potential 𝑉 (𝜑̃) reaches its minimum, and we obtain

𝑡′ = (𝜂𝛥) 1
2−2𝛥 (5-13)

Also, we have𝑉 ′′(𝜑̃𝑚) = 2(1− 𝛥)𝛥 1
1−𝛥𝜂

1
1−𝛥 . Therefore, if we quantize this action, we can

see that there are harmonic oscillator-like excitations around 𝜑̃ ≈ 𝜑̃𝑚

5.3 Energy Gap of the System

Since we are considering the Schwarzian region, |𝑇𝐹𝐷〉 is only an approximate ground
state, and the energy of the system is not actually zero. We expect to obtain a gapped phase,
and we are at a position close to the ground state. Also, to facilitate the discussion of low
temperature later, we need to estimate the distance to the first excited state.

Claim: For a bulk field with conformal weight 𝛥, the energy spectrum based on the
Virasoro algebra is 𝐸𝑡 = 𝛥 + 𝑛•; while the energy spectrum obtained from the effective
potential excitations in eqn 5 − 11 is
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𝛥𝐸𝑢̃ = 𝑡
′
√

2(1 − 𝛥), 𝐸𝑢̃ =

(
𝑛 + 1

2

)
𝛥𝐸𝑢̃ (5-14)

𝐸conformal = 𝑡
′(𝛥 + 𝑛)

𝐸potential = 𝑡
′
√

2(1 − 𝛥)
(
𝑛 + 1

2

) (5-15)

Since we consider 𝑞 ≥ 2 in SYK, we have 𝛥 = 1
𝑞
≤ 1

2 , so we can see that

𝐸poten
𝐺 =

1
2
𝑡′
√

2(1 − 𝛥) ≥ 𝑡′𝛥 = 𝐸conf
𝐺 (5-16)

Therefore, we know that the first excited state in the conformal region we are discussing
is at 𝐸 = 𝑡′𝛥.

5.4 Energy of the Schwarzian Action

We now derive the energy corresponding to the action we have been studying, which
is not a simple task because it involves higher-order derivatives. We present the derivation
idea using the Ostrogradsky method. Due to time constraints, the issue of signs has not been
perfectly resolved and is marked in purple.

First, we derive the energy of Sch( 𝑓 (𝑢), 𝑢). Since the Schwarzian involves higher-order
derivatives, we cannot use the simple Legendre transformation. The correction method cor-
responds to introducing the Ostrogradsky canonical variables.

Constructing Ostrogradsky Variables:
For 𝑆 =

∫
𝑑𝑡 L

(
𝑞, ¤𝑞, ¥𝑞, . . . , 𝑞 (𝑛) ) , the generalized coordinates should be extended as

follows:
𝑄0 = 𝑞, 𝑄1 = ¤𝑞, 𝑄2 = ¥𝑞, · · · , 𝑄𝑛−1 = 𝑞

(𝑛−1) . (5-17)

For each coordinate 𝑄𝑖, define the conjugate momentum 𝑃𝑖:

𝑃𝑖 =
𝑛∑

𝑘=𝑖+1

(
− 𝑑
𝑑𝑡

) 𝑘−𝑖−1 (
𝜕L
𝜕𝑞 (𝑘 )

)
, 𝑖 = 0, 1, . . . , 𝑛 − 1. (5-18)

Specifically:
• When 𝑖 = 𝑛 − 1,

𝑃𝑛−1 =
𝜕L
𝜕𝑞 (𝑛) . (5-19)
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• When 𝑖 < 𝑛 − 1, multiple time differentiations with negative signs need to be applied
to the higher-order partial derivatives.

And we’ll define Ostrogradsky Hamilton as follows

𝐻 =
𝑛−1∑
𝑖=0

𝑃𝑖
¤𝑄𝑖 − 𝐿. (5-20)

Energy of the Schwarzian Part:

𝑃3 =
𝜕L
𝜕 𝑓 ′′′

= − 1
𝑓 ′
,

𝑃2 =
𝜕L
𝜕 𝑓 ′′

− 𝑑

𝑑𝑡

(
𝜕L
𝜕 𝑓 ′′′

)
= 2

𝑓 ′′

𝑓 ′2
,

𝑃1 =
𝜕L
𝜕 𝑓 ′

− 𝑑

𝑑𝑡

(
𝜕L
𝜕 𝑓 ′′

)
+ 𝑑2

𝑑𝑡2

(
𝜕L
𝜕 𝑓 ′′′

)
=
𝑓 ′′2

𝑓 ′3
− 𝑓 (3)

𝑓 ′2
.

(5-21)

After substitution, the final result is (5-22)

−L = 𝐻 = Sch( 𝑓 (𝑢), 𝑢). (5-23)

However, when we obtain eqn 5 − 25, we use the sign written in[6].
Energy of the Interaction Term
Consider the coupled SYK model with interactions. Since the highest-order deriva-

tive in the interaction term is only a first-order derivative, the corresponding Hamiltonian
is

∑
𝑖 𝑝𝑖 ¤𝑞𝑖 − Lint.

𝐻int ⊃ 𝜂(2𝛥 − 1)
[
𝑡′𝑙 (𝑢̃)𝑡′𝑟 (𝑢̃)
cos

( 𝑡𝑙−𝑡𝑟
2

) ]𝛥 (5-24)

5.5 Energy of the Full Action

𝐸𝑢̃

𝑁
= −{tan

𝑡𝑙 (𝑢̃)
2
, 𝑢̃} − {tan

𝑡𝑟 (𝑢̃)
2

, 𝑢̃} + 𝜂(2𝛥 − 1)
[
𝑡′𝑙 (𝑢̃)𝑡′𝑟 (𝑢̃)
cos 𝑡𝑙−𝑡𝑟

2

]𝛥
= −(2𝜑′′ − 𝜑′2 + 𝑒2𝜑) − 𝜂(1 − 2𝛥)𝑒2𝛥𝜑

� (𝜑′2 + 𝑒2𝜑) − 𝜂𝑒2𝛥𝜑

� − (1 − 𝛥)
𝛥

(𝜂𝛥) 1
1−𝛥

(5-25)
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The first step is obtained by using the variable 𝜑 = log(𝑡′) and the gauge condition to
simplify the expression.

The second step uses the EOM obtained from 𝑄0 = 0: 𝜑′′ + 𝑒2𝜑 = 𝜂𝛥𝑒2𝛥𝜑.
The third step is obtained when considering the linear solution, where 𝜑′′ = 0, and we

get 𝑒2𝜑 = (𝜂𝛥) 1
1−𝛥 .

5.6 After Interaction

In the GJW protocols with the interaction term containing 𝜃 (−𝑢), this scenario corre-
sponds to describing a decoupled system at 𝑢 > 0. Mathematically, this corresponds to
making the 𝜂 term vanish. For convenience, we still use the linear solution, corresponding to
𝜑′ and higher-order derivatives all vanishing. We also need the energy to satisfy the equation
of motion, i.e., 𝑄0 = 0. Specifically, solving𝐸̂𝑢̃ corresponds to erasing the 𝜂 term in the third
step above.

𝐸𝐺
𝑢̃ = 𝑁𝑡′2 (5-26)

Since the linear solution on Rindler time solves the EOM of single Schwarzian, we have

𝑡𝑙 = 𝑡𝑟 = arctan
(
tanh

(
𝜋𝑢̃

𝛽

))
or = arctan

©­­«−
1

tanh
(
𝜋𝑢̃
𝛽

) ª®®¬ , (5-27)

𝛽 here describe the temperature after we turn off the interaction. And note that both of
the expression gives a consistent solution for 𝜑 which is

𝜑 = log 𝑡′ = log


2𝜋

𝛽 cosh
(

2𝜋𝑢̃
𝛽

)  (5-28)

This 𝜑 always satisfies𝑄𝜂=0
0 = 0. Note that at u = 0, the crossing point for 𝜂 = 0 , solution

𝑡′ is (𝜂𝛥) 1
2(1−𝛥) determined by𝑄𝜂≠0

0 = 0. Therefore, we can obtain 𝛽 = 1
2𝜋 (𝜂𝛥)

− 1
2(1−𝛥) .

5.7 Low Temperature Limit

Lowering the temperature means that we need to wrap the time dimension. Although in
Euclidean 𝐴𝑑𝑆2, the condition to be satisfied is 𝑡 ∼ 𝑡 + 𝛽′, but 𝛽′ does not represent the actual
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temperature. The actual 𝛽𝑝ℎ is determined by 𝑢̃ ∼ 𝑢̃ + 𝛽𝑝ℎ •. Thus, we impose the following
periodicity relations and obtain the corresponding solutions, with linear solution and gauge
fixing concerned.

𝑡𝑙 (𝑢̃ + 𝛽𝑝ℎ) = 𝑡𝑙 (𝑢̃) + 𝛽′,
𝑡𝑟 (𝑢̃ + 𝛽𝑝ℎ) = 𝑡𝑟 (𝑢̃) + 𝛽′,

𝑡𝑙 = 𝑡𝑟 =
𝛽′

𝛽𝑝ℎ

𝑢̃.

(5-29)

Based on previous discussions, we obtain

𝑆

𝑁
=

∫
𝑑𝑢̃

(
¤𝜑2 − 𝑒2𝜑 + 𝜂𝑒2𝛥𝜑 ) . (5-30)

For the linear ansatz we consider, we have

𝑡′ =
𝛽′

𝛽𝑝ℎ

. (5-31)

Introducing the contribution of the bulk action, which is determined by the global time
period 𝛽′, denoted as 𝑍bulk(𝛽′). The Euclidean action is then given by

−𝑆𝐸
𝑁

= log 𝑍bulk(𝛽′)+𝛽𝑝ℎ

[
−(𝑡′)2 + 𝜂(𝑡′)2𝛥] , (5-32)

Remark
• The sign originates from wick rotation. We can see that when we are doing wick

rotation, 𝑡 → 𝑖𝑡𝐸 , 𝑢 → 𝑢𝐸 . But we still use 𝑡, 𝑢 convention in the following discussion.

Sch(𝑡 (𝑢), 𝑢) ≡ 𝑡′′′

𝑡′
− 3

2
( 𝑡

′′

𝑡′
)2 → −Sch(𝑡 (𝑢), 𝑢), (5-33)

𝑡′𝑟 𝑡
′
𝑙

cos2( 𝑡𝑙−𝑡𝑟2 )
→ −

𝑡′𝑙 𝑡
′
𝑟

cosh2( 𝑡𝑙−𝑡𝑟2 )
(5-34)

• The integrand of
∫
𝑑𝑢̃ does not contain 𝑢̃; we directly write it as 𝛽𝑝ℎ.

• The plus part has two interpretations: On one hand, it is the linearized ansatz version
of action in eqn 5-11, which satisfies the gauge condition 𝑄0 = 0 when on shell. On
the other hand, it is the action in 4-27 with its linear solution that kills derivative higher
than one, only 𝑡 ′2

2 left with tan(𝑡/2) mapping. Therefore, we can see this part of action
is of correct form that carries both physical meaning and gauge condition.
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Since 𝛽′ is treated as a parameter, we’ll deal its variation:

0 = −2𝑡′ + 2𝜂𝛥(𝑡′)2𝛥−1 − 𝜖 (𝛽′), 𝜖 (𝛽′) = −𝜕𝛽′ log 𝑍bulk. (5-35)

We now consider the low-temperature approximation. At low temperatures, 𝛥𝛽′ � 1•,
we can use the following approximation. Since the energy of the first excited state of the
system we are discussing is 𝛥, we can approximate

𝑍bulk(𝛽′) = 𝑒−𝛥𝛽
′
, (5-36)

and thus we can approximate

𝜖 ∼ 𝛥𝑒−𝛥𝛽
′
. (5-37)

This gives the dynamical equation in the low-temperature region:

0 = −2𝑡′ + 2𝜂𝛥(𝑡′)2𝛥−1 − 𝛥𝑒−𝛥𝛽′
, 𝑡′ =

𝛽′

𝛽𝑝ℎ

. (5-38)

5.8 Phase Transition

The phase diagram of the MQ model features an intriguing phase transition analogous
to the Hawking-Page transition, shifting from a gapped, traversable wormhole phase at low
temperatures to a gapless SYK non-Fermi liquid phase at high temperatures. This first-order
phase transition is marked by a significant loss of entropy , seen in figure 5-1, and can be
understood from the gravity perspective as a transition from a black hole to a thermal gas at
low temperatures in AdS spacetime[28].

5.9 Bulk Interpretation

In this subsection, we are discussing how to interpret the solution in Gravity Picture.
We’ll slightly review the coordinate system discussed in chapter 4 before further discus-

sion.

5.9.1 Review Coordinate system

In global coordinate syste, we use coordinate (𝑇, 𝜎) where 𝑇 ≡ 𝑡𝑙, 𝑟 in MQ’s notation.
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Figure 5-1 Entropy of the system[28]

𝑌−1 =
cos(𝑇)
sin(𝜎)

𝑌0 =
sin(𝑇)
sin(𝜎)

𝑌1 = cot(𝜎)

In poincare coordinate system, we use coordinate (𝑡𝑝, 𝑧), It is consistent with what we
discussed in Chapter 4 with 𝜇 = 1

𝑌−1 = −1
2

(
1
𝑧
+ 𝑧

)
+
𝑡2𝑝

2𝑧
,

𝑌0 = −
𝑡𝑝

𝑧
,

𝑌1 = −1
2

(
1
𝑧
− 𝑧

)
−
𝑡2𝑝

2𝑧
.

5.9.2 Boundary of JT gravity

In chapter 3, we mentioned the boundary condition in JT gravity implies 𝑧 = 𝜖𝑡′𝑝, we’ll
see how to interpret this boundary,with MQ’s result in eqn 5-13 that 𝑡′𝑙 = 𝑡

′
𝑟 = const, in gravity

picture.
In Poincare coordinate, 𝑌−1 ≈

𝑡2
𝑝−1
2𝑧 , and we have:

𝑌 2
−1 + 𝑌 2

0 =

(
𝑡2𝑝 + 1
2𝜖𝑡′𝑝

)2
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Figure 5-2 Linear Solution in Penrose Diagram (Global coordinate)[6]

In global Coordinate, we have

𝑌 2
−1 + 𝑌 2

0 =
1

sin2 𝜎

Notice that using 𝑌0
𝑌1+𝑌−1

, we can see that 𝑡𝑝 = tan( 𝑇2 ). Therefore, we have

sec( 𝑇2 )
2𝜖 sec( 𝑇2 ) · 𝑇 ′(𝑢)

=
1

sin𝜎

Once we use the result 𝑇 ′ ≡ 𝑡′𝑙 = 𝑡′𝑟 = ±constant in MQ model’s solution, we can see our
result equals to 𝜎 = 𝐶 and this means the solution , representing the boundary trajectory and
shown in pink line in figure 5-2, extends to the future.

We can see the boundary extend straightly to the future. To some degree, it represents a
traversable, though more evidence in the energy spectrum need to be discussed before calling
it a WH in a formal way. When we emit a photon from one of the bouundary, it travels along
the 45 degree line and would ultimatly reach the boundary on the other side. However, in
simple JT gravity, the boundary trajectory looks like what shown in figure 5-3 where no
signal can be send to the other boundary trajectory.
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Figure 5-3 Physical boundaries of N-𝐴𝑑𝑆2

5.10 Beyond Schwarzian
5.10.1 Review MQ Setting

We have
𝐻tot = 𝐻

SYK
𝐿 + 𝐻SYK

𝑅 + 𝐻 int (5-39)

where 𝐽𝐿𝑖1 · · ·𝑖𝑞 = (−1)𝑞/2𝐽𝑅𝑖1 · · ·𝑖𝑞 , 𝐻 int = 𝑖𝜇
∑

𝑗 𝜓
𝑗
𝐿𝜓

𝑗
𝑅.

The previous discussion was directly based on 𝑆free
𝐿 ∼ 𝑆free

𝑅 ∝
∫
𝑑𝑢 Sch. However, the

discussion here that deviates from the Schwarzian region needs to refer to the specific tech-
niques of Gaussian integrals in Chapter 2. In principle, we need to carefully discuss whether
it is proper to use Euclidean signature or Lorentzian signature. However, we are not going
to focus on them in this section, it would be lightly discussed the difference in next section.
Here we’ll simply follow the procedure in[6] and deriving SD eqn in coupled SYK.
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5.10.2 Gaussian Integral

In the process of performing the Gaussian integral, we are effectively dealing with the
following ensemble average:

𝐽𝑖1 · · ·𝑖𝑞 (𝜓𝐿
𝑖1
· · ·𝜓𝐿

𝑖𝑞
− (−1)𝑞/2𝜓𝑅

𝑖1
· · ·𝜓𝑅

𝑖𝑞
) (5-40)

The difference from what discussed in chapter 2 is that the squared term in the integral result
includes

𝑋𝐿𝑋𝐿 + (−1)𝑞𝑋𝑅𝑋𝑅 + (−1)𝑞/2(𝑋𝐿𝑋𝑅 + 𝑋𝑅𝑋𝐿) (5-41)

where 𝑋𝑎 = 𝑖𝑞/2𝜓𝑎
𝑖1
· · ·𝜓𝑎

𝑖𝑞
. This effect corresponds to the appearance of the following form

in the final 𝐺𝛴 :

log〈𝑍〉/𝑁 = −𝑆𝐸
𝑁

⊃ 1
2

∑
𝑎𝑏

∬ [
1
𝑞
𝐽2𝑠𝑎𝑏𝐺𝑎𝑏 (𝜏1, 𝜏2)𝑞

]
(5-42)

where 𝑎, 𝑏 = {𝐿, 𝑅}, 𝑠𝐿𝐿 = 𝑠𝑅𝑅 = 1, 𝑠𝐿𝑅 = 𝑠𝑅𝐿 = (−1)𝑞/2. Since 𝑞 ∈ 2Z, we do not need to
consider the effect of (−1)𝑞. Discussion on 𝐺𝑎𝑏 would be presented in next paragraph.

5.10.3 Path Integral and Functional Determinant

Considering the complete action, we need to introduce the kinetic term, which is specif-
ically expressed as

𝜓𝑎𝜕𝜓𝑎, 𝑎 = {𝐿, 𝑅}. (5-43)

Moreover, in addition to introducing 𝐺𝐿𝐿 and 𝐺𝑅𝑅, due to the coupling of 𝑋𝑅𝑋𝐿 and 𝑋𝐿𝑋𝑅,
we must introduce 𝐺𝐿𝑅 and 𝐺𝑅𝐿. Specifically, we need to introduce∫

D𝛴𝑎𝑏 (𝜏1, 𝜏2) exp

(
−𝑁

2
𝛴𝑎𝑏 (𝜏1, 𝜏2)

(
𝐺𝑎𝑏 (𝜏1, 𝜏2) −

1
𝑁

𝑁∑
𝑖=1

𝜓𝑖
𝑎 (𝜏1)𝜓𝑖

𝑏 (𝜏2)
))
. (5-44)

Therefore, in the action, we will have terms of the form 𝜓𝑎 (𝜕 − 𝛴𝑎𝑎)𝜓𝑎 and 𝜓𝑎𝛴𝑎𝑏𝜓𝑏, which
are quite different from our previous discussions in chapter 2.

In the two-site SYK model, it is no longer as simple as single SYK. Since the inserted
identity in partition function have 𝜓𝑎𝐴𝑎𝑏𝜓𝑏 term which is no longer a binary form suited for
gaussian integration. We can no longer use the standard path integral mentioned in chapter 2.
However, with small modification that we write𝛹 = (𝜓+, 𝜓−) , we can see𝛹 𝐴𝛹 in the action
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with consistent form shown in standard SYK. The path integral brings us exp(ln det(𝐴)) after
integration on𝛹 . Here

𝐴 =

(
𝜕𝜏 − 𝛴𝑎𝑎 −𝛴𝑎𝑏

−𝛴𝑏𝑎 𝜕𝜏 − 𝛴𝑏𝑏

)
, (5-45)

5.10.4 Solving Coupled SD Eqn

Since the action looks greatly different, we’ll new discussion on how to derive SD eqn. It
would be hard to derive the SD eqn in a simple form with the technique mentioned in chapter
2. We’ll following the discussion in appendix B, explicitly with eqn B-29. We can obtain

𝛿 ln det(A)𝑎𝑏 = − Ã𝑎𝑏

det(𝐴) 𝛿𝛴𝑎𝑏

= −𝛿𝑎𝑏𝜕𝜏 − 𝛴𝑎𝑏

det(𝐴) 𝛿𝛴𝑎𝑏.

(5-46)

The complete action and variation result are:

𝐼

𝑁
= −1

2
log det(𝛿𝑎𝑏𝜕𝜏 − 𝛴𝑎𝑏)

+ 1
2

∑
𝑎𝑏

∬ [
𝛴𝑎𝑏 (𝜏, 𝜏′)𝐺𝑎𝑏 (𝜏, 𝜏′) −

1
𝑞
𝐽2𝑠𝑎𝑏𝐺

𝑞
𝑎𝑏 (𝜏, 𝜏

′)
]
𝑑𝜏𝑑𝜏′

+ 𝑖𝜇
2

∫
[𝐺𝐿𝑅 (𝜏, 𝜏) − 𝐺𝑅𝐿 (𝜏, 𝜏)] 𝑑𝜏.

(5-47)

Ã𝑎𝑏

det(𝐴) + 𝐺𝑎𝑏 (𝜏, 𝜏′) = 0. (5-48)

Forming a Matrix

1
det(A)

(
Ã𝑎𝑎 Ã𝑎𝑏

Ã𝑏𝑎 Ã𝑏𝑏

)
+

(
𝐺𝑎𝑎 (𝜏, 𝜏′) 𝐺𝑎𝑏 (𝜏, 𝜏′)
𝐺𝑏𝑎 (𝜏, 𝜏′) 𝐺𝑏𝑏 (𝜏, 𝜏′)

)
= 0. (5-49)

Denoting (
𝐺𝑎𝑎 (𝜏, 𝜏′) 𝐺𝑎𝑏 (𝜏, 𝜏′)
𝐺𝑏𝑎 (𝜏, 𝜏′) 𝐺𝑏𝑏 (𝜏, 𝜏′)

)
(5-50)

as G, we obtain from our previous derivation

(A−1) + G = 0. (5-51)

This implies
A · G = 𝛿𝑎𝑏𝛿(𝜏1 − 𝜏2). (5-52)
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∫
𝑑𝜏′′

(
𝜕𝜏 − 𝛴𝑎𝑎 (𝜏, 𝜏′′) −𝛴𝑎𝑏 (𝜏, 𝜏′′)
−𝛴𝑏𝑎 (𝜏, 𝜏′′) 𝜕𝜏 − 𝛴𝑏𝑏 (𝜏, 𝜏′′)

)
·
(
𝐺𝑎𝑎 (𝜏′′, 𝜏) 𝐺𝑎𝑏 (𝜏′′, 𝜏)
𝐺𝑏𝑎 (𝜏′′, 𝜏) 𝐺𝑏𝑏 (𝜏′′, 𝜏)

)
= 𝛿𝑎𝑏𝛿𝜏,𝜏′ . (5-53)

Since
𝛿𝑎𝑏 =

(
1 0
0 1

)
, (5-54)

substituting 𝑎, 𝑏 = 𝐿, 𝑅 yields

𝜕𝜏𝐺𝐿𝐿 (𝜏) − 𝛴𝐿𝐿 ∗ 𝐺𝐿𝐿 (𝜏) − 𝛴𝐿𝑅 ∗ 𝐺𝑅𝐿 (𝜏) = 𝛿(𝜏),
𝜕𝜏𝐺𝐿𝑅 − 𝛴𝐿𝐿 ∗ 𝐺𝐿𝑅 − 𝛴𝐿𝑅 ∗ 𝐺𝑅𝑅 = 0.

(5-55)
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Chapter 6 Different Protocols In MQ model

Discussion by Maldacena and Qi on coupled SYK has been highly inspiring to this field,
especially for the mathematical structure of the dynamics of coupled SYK-like actions. This
chapter refers to the paper[11] to discuss the dynamics of models similar to MQ.

The first part, referring to this paper, describes the feasibility conditions for continuous
measurements of two SYKs. It turns out having similar to MQ’s model, but in my thesis, I
would only verbally repeat the approximation method in[11] on continuous measurement. In
the second part, I’ll discuss the impact of instantaneous interaction on the dynamics of the
MQ model.

6.1 Continuous Measurements and MQ Model

Specific measurements can cause the von Neumann entropy of a system to transition
from an area law to a volume law, a phenomenon known as Measurement-induced phase
transition(MIPT); similarly, there is a wormhole phase transition in the gravitational dual of
coupled SYK. This section focuses on MIPT in teleportation and wormholes.

6.1.1 How to Properly Describe Measurement:

First, we need to discuss how to properly describe measurement. This paper focuses on
KY protocols[29] shown in figure 6-1. Specifically, after evolving for a while, the system is
projected onto the maximally entangled state of the 𝐿, 𝑅 systems to complete the measure-
ment.

Before analyzing the dynamics, we have to review the construction of the system and how
to build the protocols.

6.1.2 Construction of the System

First, our system consists of 2𝑁 Majorana fermions, 𝜓𝑖
𝐿, 𝜓

𝑖
𝑅, 𝑖 = 1, . . . , 𝑁 , satisfying

the following conditions:

{
𝜓𝑖

𝛼, 𝜓
𝑗
𝛽

}
= 𝛿𝑖 𝑗𝛿𝛼𝛽, 𝛼, 𝛽 = 𝐿, 𝑅, 𝑖 = 1, . . . , 𝑁 (6-1)
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Figure 6-1 KY protocols

Remark: Though 𝐿, 𝑅 fermions are anti commuted in its construction. After the KY
protocols, the anti-commutation of 𝜓𝐿,𝑅 is no longer 0.

The system we consider is in the TFD state, which is constructed above following state:

|𝑇𝐹𝐷〉 =
∑
𝐸𝑛

𝑒−𝛽𝐸𝑛/2 |𝑛𝐿〉|𝑛𝑅〉, (6-2)

6.1.3 Construction of Protocols

Projection Operator
According to the KY protocols, the measurement operator projecting onto the maximally

entangled state is constructed as follows:

𝛱 =
𝑁∏
𝑗=1

𝛱 𝑗 =
𝑁∏
𝑗=1

1
2

(
1 − 𝑖𝜓 𝑗

𝐿𝜓
𝑗
𝑅

)
. (6-3)

Measurement Protocol
We aim to describe continuous measurements. Define the projection rate 𝜅, and the cor-

responding measurement protocol is described as:
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𝜌̃(𝑢+𝑑𝑢) = 𝑖[𝐻, 𝜌̃(𝑢)]𝑑𝑢+𝜌̃(𝑢)(1−4𝑁𝜅𝑑𝑢)+4𝑁𝜅𝑑𝑢
∑
𝑗

1
𝑁
·1
2
(1−𝑖𝜓 𝑗

𝐿𝜓
𝑗
𝑅) 𝜌̃(𝑢)

1
2
(1−𝑖𝜓 𝑗

𝐿𝜓
𝑗
𝑅).

(6-4)
The corresponding physical interpretation is that within the time 𝑑𝑢, there is a probabil-

ity of 1 − 4𝑁𝜅𝑑𝑢 of not performing the measurement. If a measurement is performed, we
randomly select 1 ≤ 𝑗 ≤ 𝑁 for the projection measurement and only retain the result with
an eigenvalue of 1.

Measurement to Path Integral Representation
The Keldysh path integral is a natural path integral description of the von Neumann equa-

tion, which describes the evolution of 𝜌. The Schwinger-Keldysh formalism is used subse-
quently. The continuous measurement protocol can be obtained through the above method
theoretically. But continuous measurements in QFT will introduce UV divergence[11], there-
fore Milekhin has to use weak projections, or measurements with post-selection, to avoid this
problem.

Technically, the KY protocols under weak projection can be expressed as:

𝑖𝑆weak proj = −𝜅
∑
𝑗

∫
𝑑𝑢

(
𝑖𝜓+

𝑅, 𝑗𝜓
+
𝐿, 𝑗 + 𝑖𝜓−

𝐿, 𝑗𝜓
−
𝑅, 𝑗

)
,

𝑖𝑆𝑀𝑄 ∝ 𝜇
∑
𝑗

∫
𝑑𝑢

(
𝜓+

𝐿, 𝑗𝜓
+
𝑅, 𝑗 − 𝜓−

𝐿, 𝑗𝜓
−
𝑅, 𝑗

)
.

(6-5)

We can see the resemblance between MQ/GJW protocols and Milekhin’s weak projection
protocols. The dynamic of 𝑆weak proj wouldn’t be discussed here.

6.1.4 Characterizing Information Transfer in the System

After well-estalished the protocols, a method shall be specified to detect the system. In
Milekhin’s paper, it is mentioned that the Teleportation fidelity is proportional to the anti-
commutator for fermions lying on the 𝐿, 𝑅 boundaries. Therefore, the information trans-
fer between boundaries is characterized by Im𝐺𝐿𝑅 (𝑢1, 𝑢2) = −𝑖Tr (𝜌𝐿𝑅{𝜓𝐿 (𝑢1), 𝜓𝑅 (𝑢2)}).
Specifically, we will start the protocol at 𝑢 = 0, insert information on the 𝐿 side at 𝑢 = 𝑢1,
and then detect the ability to detect the information on the 𝑅 side at time𝑇 . The mathematical
description is Im𝐺𝐿𝑅 (𝑢1, 𝑇). And deriving the two-point function would be our aim in the
following discussion.
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6.2 MQ Model with Instantaneous Interactions

Unlike the GJW protocols, we replace 𝜃 (−𝑢) → 𝛿(𝑢 − 𝑢∗) and observe the impact. The
physical interpretation is to instantaneously open interactions, or act on a single measurement
to the system. We’ll determine how information transfer between tow copies of SYK . Similar
to the previous discussion, correlation functions are used to discuss information transfer, but
here the choice of 𝐺̃𝐿𝐿• is indeed puzzling. We still follow Milekhin’s discussion and present
the solution approach for the Schwarzian dynamics corresponding to a single projection.
Though the specific solution has not been verified yet.

As mentioned before, imaginary part of green’s function is used to describe how informa-
tion get transferred. One of the correlation function we are interested in correlation functions
is as follows

〈𝑇𝐹𝐷 |𝜓𝐿 (𝑢1)𝛱𝜅 (0)𝛱𝜅 (0)𝜓𝐿 (𝑢2) |𝑇𝐹𝐷〉 (6-6)

We believe that the inserted instantaneous interaction only changes the boundary con-
ditions of 𝐺 and 𝛴 , similar to the discussion in[7]. Therefore, theoretically, by solving for
the 𝑓 mode with proper boundary condition, we can solve the correlation function with the
inserted projection operator in large N, low energy region.

6.3 Note for Schwarzian in MIPT

This section formally discusses the dynamics in the model proposed by Milekhin. Cor-
responding to the measurement at 𝑢 = 𝑢∗, we obtain the following dynamics:

𝑆 = −
∫
𝑑𝜏 Sch( 𝑓𝐿, 𝑢) −

∫
𝑑𝜏 Sch( 𝑓𝑅, 𝑢) + 𝑖𝜅

∫
𝑑𝑢 𝛿(𝑢 − 𝑢∗)

(
𝑓 ′𝐿 (𝑢) 𝑓 ′𝑅 (𝑢)

( 𝑓𝐿 (𝑢) − 𝑓𝑅 (𝑢))2

)2

(6-7)

Now we need to solve the Equation of Motion. First, we solve the variation of the
Schwarzian, then discuss the variation of the interaction, and finally obtain the EOM.

Variation of the Schwarzian Part:

𝛿Sch = −(Sch)′ 𝛿 𝑓𝐿
𝑓 ′𝐿

(6-8)

Proof:
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Without loss of generality, we can consider the Schwarzian action in the IR JT action.

𝐼𝑠𝑐ℎ = − 1
8𝜋𝐺𝑁

∫
𝑑𝑢 𝜙(𝑢)Sch( 𝑓 (𝑢), 𝑢) (6-9)

And we’ll do the variation with respect to 𝑓 (𝑢), and in the final step, we’ll set 𝜙 = 1.

∫
𝜙

(
𝑓 ′ 𝑓 ′′′

𝑓 ′2
− 3

2

(
𝑓 ′′

𝑓 ′

)2
)

=
∫
𝜙

(
𝑓 ′′

𝑓 ′

) ′
− 𝜙1

2

(
𝑓 ′′

𝑓 ′

)2

= −
∫
𝜙′
𝑓 ′′

𝑓 ′
+ 𝜙1

2

(
𝑓 ′′

𝑓 ′

)2

=
∫
−

[
𝜙
𝛿 𝑓 ′′

𝑓 ′
− 𝜙 𝑓

′′

𝑓 ′2
𝛿 𝑓 ′ + 𝜙 𝑓

′′𝛿 𝑓 ′′

𝑓 ′2
− 𝜙 𝑓

′′2

𝑓 ′3
𝛿 𝑓 ′

]
=

∫
−

[
𝛿 𝑓 ′′ ·

(
𝜙′

𝑓 ′
+ 𝜙 𝑓

′′

𝑓 ′2

)
− 𝛿 𝑓 ′ ·

(
𝜙′
𝑓 ′′

𝑓 ′2
+ 𝜙 𝑓

′′2

𝑓 ′3

)]

=
∫
𝛿 𝑓 · −

[(
𝜙′

𝑓 ′
+ 𝜙 𝑓

′′

𝑓 ′2

) ′′
+

(
𝜙′
𝑓 ′′

𝑓 ′2
+ 𝜙 𝑓

′′2

𝑓 ′3

) ′]
= −

∫
𝑑𝑓

[(
(𝜙 𝑓 ′)′
𝑓 ′2

) ′′
+

(
𝑓 ′′

𝑓 ′3
· (𝜙 𝑓 ′)′

) ′]
𝛿 𝑓

Setting 𝜙 as 1 and what in the bracket gives us
3( 𝑓 ′′)3 + 𝑓 (4) ( 𝑓 ′)2 − 4 𝑓 ′′′ 𝑓 ′ 𝑓 ′′

𝑓 ′4

Since Sch defines as
𝑓
′′′

𝑓 ′
− 3( 𝑓 ′′)2

2( 𝑓 ′)2 , we can check
Sch′

𝑓 ′
is the same.

Variation of the Interaction Part:
The interaction part and the variation result are as follows:

𝑆int = 𝜅
∫
𝑑𝑢 𝛿(𝑢 − 𝑢∗)

(
𝑓 ′𝐿 (𝑢) 𝑓 ′𝑅 (𝑢)

( 𝑓𝐿 (𝑢) − 𝑓𝑅 (𝑢))2

)𝛥
(6-10)

𝛿𝑆int = − 𝛿 𝑓𝐿
𝑓 ′𝐿 (𝑢∗)

𝛿′(𝑢 − 𝑢∗)𝜅𝛥
(

𝑓 ′𝐿 (𝑢∗) 𝑓 ′𝑅 (𝑢∗)
( 𝑓𝐿 (𝑢∗) − 𝑓𝑅 (𝑢∗))2

)𝛥
+ A
𝑓 ′𝐿
𝛿(𝑢 − 𝑢∗), A = const. (6-11)
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Proof:
We’ll do the variation over 𝑓𝐿 and first part is the variation over 𝑓 ′𝐿, second part deals

with 𝑓𝐿 in the denominator.

1:
∫
𝑑𝑢 𝛿(𝑢 − 𝑢∗)

[
𝑓 ′𝑅

( 𝑓𝐿 − 𝑓𝑅)2

]𝛥 𝛥( 𝑓 ′𝐿)𝛥
𝑓 ′𝐿

𝛿 𝑓 ′𝐿+

2:
∫
𝑑𝑢 𝛿(𝑢 − 𝑢∗) ( 𝑓 ′𝐿 𝑓 ′𝑅)𝛥 ·

−2𝛥
( 𝑓𝐿 − 𝑓𝑅)2𝛥−1 𝛿 𝑓𝐿

≡ 𝐴1 ×
𝛿 𝑓𝐿
𝑓 ′𝐿
𝛿(𝑢 − 𝑢∗)

Integral by part of 1:∫
𝑑𝑢 𝛥𝛿 𝑓𝐿

{
−𝛿′(𝑢 − 𝑢∗) 1

𝑓 ′𝐿

[
𝑓 ′𝐿 𝑓

′
𝑅

( 𝑓𝐿 − 𝑓𝑅)2

]𝛥
− 1
𝑓 ′𝐿
𝛿(𝑢 − 𝑢∗)

[
1
𝑓 ′𝐿

(
𝑓 ′𝐿 𝑓

′
𝑅

( 𝑓𝐿 − 𝑓𝑅)2

)𝛥] ′
𝑓 ′𝐿

}
≡ 𝑋 + 𝐴2 ×

𝛿 𝑓𝐿
𝑓 ′𝐿
𝛿(𝑢 − 𝑢∗)

When we evaluate 𝐴1 + 𝐴2 at 𝑢∗ we’ll have A and putting 𝜅 back in 𝑋 we’ll have the result
we need.

Derive the Reparametrization Mode
Since we are dealing with variation of the action with respect to 𝑓𝐿 (Same procedure for

𝑓𝑅 and no need for repeated discussion), we’ll have 𝛿Sch + 𝛿𝑆int = 0 and when we strip the
factor 𝛿 𝑓𝐿

𝑓 ′𝐿
and put back the 𝑖𝜅 factor, we’ll have

Sch′ = 𝑖𝛿′(𝑢 − 𝑢∗)𝜅𝛥
[

𝑓 ′𝐿 𝑓
′
𝑅

( 𝑓𝐿 − 𝑓𝑅)2

]𝛥
𝑢=𝑢∗

− 𝑖𝜅A𝛿(𝑢 − 𝑢∗) (6-12)

We’ll use the formula of
∫
𝛿(𝑥) = 𝜃 (𝑥), where 𝜃 (𝑥) is the step function. Integrating both

sides and omitting the integration constant gives us:

Sch = 𝑖𝛿(𝑢 − 𝑢∗)𝜅𝛥
[

𝑓 ′𝐿 𝑓
′
𝑅

( 𝑓𝐿 − 𝑓𝑅)2

]𝛥
𝑢=𝑢∗

− 𝑖𝜅A𝜃 (𝑢 − 𝑢∗) (6-13)

The Schwarzian is a function containing higher derivatives (up to order three) over 𝑓𝐿 (𝑢).

Sch( 𝑓 (𝑢), 𝑢) =
𝑓
′′′

𝐿 (𝑢)
𝑓 ′𝐿 (𝑢)

−
3 𝑓 ′′𝐿 (𝑢)2

2 𝑓 ′𝐿 (𝑢)2 (6-14)

Therefore, the discontinuity has to be brought by 𝑓 ′′′𝐿 (𝑢).

𝑓
′′′

𝐿 = 𝑖 𝑓 ′𝐿 (𝑢)𝛿(𝑢 − 𝑢∗) × 𝜅𝛥
[

𝑓 ′𝐿 𝑓
′
𝑅

( 𝑓𝐿 − 𝑓𝑅)2

]𝛥
𝑢=𝑢∗

(6-15)
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We’ll set all 𝑢 on the right-hand side to 𝑢∗ owing to the effect of the delta function and use
the delta-step function relation again, we’ll derive the following relation on 𝑓𝐿:

𝑓 ′′𝐿 (𝑢∗ + 𝜖) − 𝑓 ′′𝐿 (𝑢∗ − 𝜖) = 𝑖𝜅 𝑓 ′𝐿 (𝑢∗), 𝜅 = 𝜅𝛥

(
𝑓 ′𝐿 (𝑢∗) 𝑓 ′𝑅 (𝑢∗)

( 𝑓𝐿 (𝑢∗) − 𝑓𝑅 (𝑢∗))2

)𝛥
, (6-16)

So we have obtained the effect of a single measurement on the boundary dynamics of the
𝐿 side. Similarly, the same pattern applies to the 𝑅 side, which means that 𝑓 and 𝑓 ′ are
continuous, but 𝑓 ′′ has a jump when 𝑢 = 𝑢∗.

Example of Solution
This part follows Milekhin’s paper[11], but there are still some places that cannot be re-

produced at present, and it is not certain whether they are typos. These issues await future
resolution.

Since we need to consider the Lorentzian evolution, referring to[6] and[21], we need to fix
the gauge for 𝑡𝐿,𝑅. Here, we provide the relationship between the Euclidean Poincare time 𝑓 𝛽

and the Global time 𝑡𝐿,𝑅 as follows, to describe the 𝑓 𝛽 ansatz that satisfies the gauge condition.
Then, we obtain the dynamical mode 𝑓𝐿,𝑅 we need to solve through analytic continuation.

tan
𝑡±𝐿 (𝑢)

2
= 𝑓 𝛽± (𝑢), tan

𝑡±𝑅 (𝑢)
2

= − 1
𝑓 𝛽± (−𝑖𝛽/2 − 𝑢)

.• (6-17)

To satisfy the gauge condition 𝑄± = 0 or the 𝐿 ↔ 𝑅 symmetry, we need to require
𝑡𝐿 (𝑢) = 𝑡𝑅 (𝑢). It can be verified that the following ansatz directly satisfies this condition:

𝑓 𝛽± (𝑢) = ±𝑒
−𝛼𝑢 − 𝑖𝐴±𝑒

±𝑖𝛼𝛽/4

𝐴±𝑒−𝛼𝑢 + 𝑖𝑒±𝑖𝛼𝛽/4 (6-18)

Subsequently, we assign 𝑓 𝛽± to the Poincare time on the Euclidean Keldysh contour ±
respectively •.

When we consider 〈𝑇𝐹𝐷 |𝜓𝐿 (𝑢1)𝛱𝜅 (𝑢∗)𝛱𝜅 (𝑢∗)𝜓𝐿 (𝑢2) |𝑇𝐹𝐷〉, it is equivalent to contin-
uously inserting two sets of measurements in the Euclidean part of the Keldysh contour. See
figure 6-2 where two pairs of dots inserted in the bottom of SK contour represent measure-
ment insertion. We can see twice there are twice the jump between 𝑓 𝛽+ and 𝑓 𝛽−

Thus, we obtain a double jump in 𝑓 𝛽
′′, and a jump from the Keldysh + contour to the

Keldysh - contour. The corresponding boundary conditions are as follows:

𝑓 𝛽+ (𝑢∗) = 𝑓 𝛽− (𝑢∗), 𝑓 ′𝛽+ (𝑢∗) = 𝑓 ′𝛽− (𝑢∗) (6-19)
𝑓 ′′𝛽+ (𝑢∗) = 𝑓 ′′𝛽− (𝑢∗) − 2𝑖𝜅 𝑓 ′𝛽+ (𝑢∗). (6-20)
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Figure 6-2 SK path integral

We choose to perform the measurement at 𝑢∗ = 0. To facilitate the analytic continuation
to Lorentzian time, it is required that 𝑓 𝛽± (0) = 0•. As pointed out in[11], 𝐴+ is a gauge
choice. In conjunction with the measurement time we have selected, we are required to
choose 𝐴± = −𝑖𝑒∓𝑖𝛼𝛽/4 here. Consequently, we obtain the corresponding 𝑓 𝛽± :

𝑓 𝛽+ (𝑢) = 𝑖
sinh

(
𝛼𝑢
2

)
sinh

(
𝛼𝑢
2 + 𝑖 𝛼𝛽4

) , (6-21)

𝑓 𝛽− (𝑢) = −𝑖
sinh

(
𝛼𝑢
2

)
sinh

(
𝛼𝑢
2 − 𝑖 𝛼𝛽4

) . (6-22)

(6-23)

It is assumed here that the information from the measurement has been decoded into
𝑓 . Therefore, when we observe 〈𝑇𝐹𝐷 |𝜓𝐿 (𝑢1)𝛱𝜅 (0)𝛱𝜅 (0)𝜓𝐿 (𝑢2) |𝑇𝐹𝐷〉 to describe the in-
formation transfer between two boundaries, we simply need to substitute the corresponding
two-point function and obtain the result:(

𝛼2/4
−𝑖 sinh(𝛼(𝑢1 − 𝑢2)/2) + 2𝜅̃

𝛼
sinh(𝛼𝑢1/2) sinh(𝛼𝑢2/2)

)𝛥
• (6-24)
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Chapter 7 Keldysh SYK

In this chapter, we explore a model that bears a striking mathematical resemblance to
the MQ model, yet its starting point is entirely different. Here, we discuss the evolution of
an open SYK system, described using the Lindbladian formalism. However, we simplify
the complex description through the Choi-Jamiolkowski Isomorphism, obtaining a dynami-
cal evolution that shares significant similarities with the Euclidean two-site SYK model dis-
cussed in \ref{SUPERGS}. This chapter will first review the basic description of open system
dynamics, then discuss how the Choi-Jamiolkowski Isomorphism performs vectorization op-
erations, and finally examine two different m

7.1 From Schrödinger equation to Liouvillian equation

We are familiar with the Schrödinger equation, which can effectively describe the evolu-
tion of state vectors:

𝑑

𝑑𝑡
|𝜑(𝑡)〉 = −𝑖𝐻 |𝜑(𝑡)〉 (7-1)

If we switch to another perspective (the Heisenberg Picture), the evolution is not of |𝜑〉,
but of the operators 𝐴̂(𝑡) we are studying. We then obtain the Heisenberg equation:

𝑑

𝑑𝑡
𝐴̂(𝑡) = 𝑖[𝐻̂, 𝐴̂(𝑡)] + 𝜕 𝐴̂(𝑡)

𝜕𝑡
(7-2)

However, the world is not composed solely of pure states. In other words, we cannot
always describe a system using the simple |𝜑〉. Still in the Schrödinger picture, for mixed
states, we need to consider 𝜌 and use the von Neumann equation to describe the dynamics of
the system:

𝑑

𝑑𝑡
𝜌(𝑡) = −𝑖[𝐻̂ (𝑡), 𝜌(𝑡)] (7-3)

A naive description of the free evolution of 𝜌 in the Schrödinger picture is given by (7-5).
We can consider the evolution both backward and forward in time. This can be described
using two copies of 𝜓, denoted as 𝜓±, which correspond to the evolution in both directions.
This approach allows us to use the Keldysh formalism to describe the real-time evolution
of 𝜌 in an open system which would be useful for later discussion but not much in current
scenario.
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𝜌 → 𝑒−𝑖𝐻𝑢𝜌𝑒+𝑖𝐻𝑢 (7-4)
𝜌 → 𝜌 − 𝑖𝐻𝑑𝑢𝜌 + 𝑖𝜌𝐻𝑑𝑢 (7-5)

For an open system with dissipation, the evolution of 𝜌 should be described by a differ-
ential equation using the Liouvillian. The specific form is given below, where 𝐿𝑖 represents
the Lindblad operators.

𝑑𝜌

𝑑𝑡
= L(𝜌) (7-6)

L(𝜌) = −𝑖[𝐻SYK, 𝜌] +
∑
𝑖

𝛾𝑖

[
𝐿𝑖𝜌𝐿

†
𝑖 −

1
2
{𝐿†

𝑖 𝐿𝑖, 𝜌}
]

(7-7)

The purpose of this paper is not to provide a detailed and rigorous discussion of the
Lindblad equation and the evolution of open systems. For more detailed discussions, we
refer to[10]. The focus of this section is to introduce the use of this formalism to describe
the SYK system. This formalism shares a high degree of similarity with the MQ model, and
similar techniques can be applied. The specific content is mainly based on[8].

7.2 Choi-Jamiolkowski Isomorphism Vectorization

Since L(𝜌) is a relatively complex operator, transforming 𝜌 ⇒ |𝜌〉 and L(𝜌) ⇒ L|𝜌〉
allows us to obtain a form that is very familiar in basic quantum mechanics. This process is
Choi-Jamiolkowski Isomorphism (C-J Iso). For example, the evolution of 𝜌(𝑡) can be written
as:

|𝜌(𝑡)〉 = 𝑒L𝑡 |𝜌(0)〉 (7-8)

Formally, this can be understood as L � −𝑖𝐻int. Following the Keldysh formalism, which
naturally describes the system, we obtain two fields: 𝜓±, which describe the time evolution
in the positive and negative directions, respectively. The paper[8][27]provides a detailed dis-
cussion on how to describe L after the C-J Isomorphism:

L = −𝑖𝐻SYK
𝐿 + 𝑖(−1)

𝑞
2 𝐻SYK

𝑅 − 𝑖𝜇
∑
𝑖

𝜓𝑖
𝐿𝜓

𝑖
𝑅 − 1

2
𝜇𝑁 (7-9)
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One of the important details is as follows,[14]

Intuition on C-J Iso
This iso corresponds to the following mapping:

|𝑖〉〈 𝑗 | ⇒ |𝑖〉 ⊗ | 𝑗〉 (7-10)

According to the discussion in[14], 𝛾 can be used as a representation for 𝜓±. Naively, we
have 𝛾𝑖 ⊗ 1 and 1 ⊗ 𝛾 𝑗 , but

𝛾𝑖 ⊗ 1 · 1 ⊗ 𝛾 𝑗 = 1 ⊗ 𝛾 𝑗 · 𝛾𝑖 ⊗ 1 = 𝛾𝑖 ⊗ 𝛾 𝑗 (7-11)

This description loses the anti commutation property of 𝜓. To address this, we need to
transform 1 ⊗ 𝛾 𝑗 ⇒ 𝛾𝑐 ⊗ 𝛾 𝑗 . Detailed corrections to the construction of the TFD state under
this representation are discussed in[8][27], and the following operator reflections are obtained:

𝜓𝑘
𝐿 |0〉 = −𝑖𝜓𝑘

𝑅 |0〉 (7-12)

|0〉 =
∑
𝑗

| 𝑗〉𝑒𝜋𝑖𝛾𝑐/4𝐶𝐾 | 𝑗〉. (7-13)

7.3 Constructing the Lagrangian

We know that the Lagrangian can be constructed through the Legendre transformation of
the Hamiltonian:

𝐿 = Kinetic − 𝐻 (7-14)

A naive idea is to consider the system as consisting of two independent sets of fields, 𝜓±,
so that

Kinetic =
𝑖

2

∑
𝜓+𝜕𝑡𝜓+ +

𝑖

2

∑
𝜓−𝜕𝑡𝜓 (7-15)

However, a more rigorous discussion is needed[10]. The action takes the form

𝑆 =
∫
𝑑𝑡

(
𝑖

2
𝜓+𝜕𝑡𝜓+ −

𝑖

2
𝜓−𝜕𝑡𝜓− − 𝑖L(𝜓+, 𝜓−)

)
(7-16)
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The negative sign in 𝜓−𝜕𝜓− originates from the Keldysh contour C−, which integrates in
the reverse time direction. However, according to the discussion of the C-J Iso, 𝜓 is mapped
to C− through a non-trivial mapping. Corresponding to 𝜓 ⇒ 𝛼𝜓−, it was proven in[8] that
𝛼 = −𝑖, so our result returns to eqn 7-15.

In summary, we obtain 𝐿keldysh and 𝐿MQ, and we can observe a high degree of similarity
in their forms.

𝐿keldysh =
𝑖

2

∑
𝜓+𝜕𝑡𝜓+ +

𝑖

2

∑
𝜓−𝜕𝑡𝜓− + 𝑖𝐻+

SYK − 𝑖(−1)
𝑔
2 𝐻−

SYK + 𝑖𝜇
∑
𝑖

𝜓𝑖
𝐿𝜓

𝑖
𝑅 + 1

2
𝜇𝑁

(7-17)

𝐿MQ =
𝑖

2

∑
𝜓+𝜕𝜏𝜓+ +

𝑖

2

∑
𝜓−𝜕𝜏𝜓− − 𝐻𝐿

SYK − (−1)
𝑞
2 𝐻𝑅

SYK − 𝑖𝜇
∑
𝑖

𝜓𝑖
𝐿𝜓

𝑖
𝑅 (7-18)

Remark:
1. The gray part does not have a dynamic mode, so it can be ignored; 2. The interaction

part of MQ is Hermitian, while the interaction part of Keldysh is anti-Hermitian, so the
description is different.

7.4 𝐺𝛴 Action for Liouvillian

The derivation can be conducted in different signature. Though Lorentzian signature and
Euclidean signature have some significant differences in details. Lorentzian is more direct
though messy in its factor. Euclidean one needs some trick and easier to conduct. Two
approach are equivalent though not proven here.

7.4.1 Lorentzian signature

𝑍 =
∫
D𝜓+D𝜓−𝑒

+𝑖𝑆 [𝜓+,𝜓− ] , (7-19)

We notice that the exponential factor has a plus sign. This will have a corresponding effect
on the identity we insert. However, since 𝐺𝑎𝑏 (𝑡, 𝑡′) = − 𝑖

𝑁

𝑁∑
𝑖=1
𝜓𝑎 (𝑡)𝜓𝑏 (𝑡′), it will produce a

corresponding sign correction. The detailed derivation process has been shown in[8] and[30].
However, the calculations are very complicated due to the complex indices, making it difficult
to solve the Schwinger-Dyson (SD) equations. Here, we use the method of Antonio and Jie
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Ping to simplify the calculation. We realize that the following notation can greatly simplify
the complexity of 𝐺𝛴 .

𝜓𝑖 (𝑡+) = 𝜓𝑖
𝐿 (𝑡)with 𝑡+ ∈ C+

𝜓𝑖 (𝑡−) = 𝑖𝜓𝑖
𝑅 (𝑡),with 𝑡− ∈ C−

𝑑𝑧 = 𝑑𝑡,with 𝑡+ ∈ C+

𝑑𝑧′ = −𝑑𝑡,with 𝑡′+ ∈ C−

We can obtain the 𝐺𝛴 action in the form of single SYK:

𝑖𝑆 =
𝑁

2

Tr log(𝑖𝜕𝑧 − 𝛴) −
∫
C

𝑑𝑧 𝑑𝑧′ 𝛴 (𝑧, 𝑧′)𝐺 (𝑧, 𝑧′) − 𝑖
𝑞𝐽2

𝑞

∫
C

𝑑𝑧 𝑑𝑧′ [𝐺 (𝑧, 𝑧′)]𝑞 (7-20)

+ 2𝑖𝜇
∫
C

𝑑𝑧 𝑑𝑧′ 𝐾 (𝑧, 𝑧′)𝐺 (𝑧, 𝑧′)
 . (7-21)

It is easy to write down the SD equations. We just need to place 𝑧, 𝑧′ on the appropriate
contour and properly handle the sign problem to restore the SD equations for𝐺𝑎𝑏 with 𝑎, 𝑏 ∈
{+,−}.

(𝑖𝜕 − 𝛴) · 𝐺 = 1C, (7-22)
𝛴 (𝑧, 𝑧′) = −𝑖𝑞𝐽2 [𝐺 (𝑧, 𝑧′)]𝑞−1 + 𝑖𝜇 [𝐾 (𝑧, 𝑧′) − 𝐾 (𝑧′, 𝑧)] . (7-23)

7.4.2 Euclidean signature

𝑍 =
∫
D𝜓𝐿D𝜓𝑅𝑒

−𝐼 [𝜓𝐿 ,𝜓𝑅 ] (7-24)

The Liouvillian is defined in real time, so we need to analogize to obtain the Euclidean
time evolution description of the SYK system. Specifically, by giving the Lagrangian of the
system in Euclidean space, we obtain the complete description of the system.

First, we observe that the time evolution of our system is exp(L𝑡). If we describe it
using Euclidean time, corresponding to 𝑡 → 𝜏, then the evolution operator can be written as
exp(−𝐻𝜏). Therefore, we can directly write the Hamiltonian of the Euclidean time system
we describe:
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𝐻 = −L (7-25)

We relabel 𝜓± as 𝜓𝐿,𝑅, representing the two-site SYK model. Thus, we obtain an evolu-
tion equation that is consistent with the Liouvillian. Physically, it describes a non-Hermitian
but PT-symmetric two-site SYK model. This process can be well compared with Chapter 5,
since the derivation of the MQ model is also carried out in Euclidean signature.

7.4.2.1 Comparison of MQ and Liouvillian in Euclidean time

𝐻𝑀𝑄 = 𝐻SYK
𝐿 + 𝐻SYK

𝑅 + 𝑖𝜇
∑
𝑗

𝜓 𝑗
𝐿𝜓

𝑗
𝑅

𝐻L = 𝑖𝐻SYK
𝐿 − 𝑖𝐻SYK

𝑅 + 𝑖𝜇
∑
𝑖

𝜓𝑖
𝐿𝜓

𝑖
𝑅

The notation here is different from that in eqn 7-9. Here, (−1) 𝑞
2 is combined into the

𝐽· · · coupling. The rest follows the MQ model and the Euclidean path integral, that is, intro-
ducing the kinetic term 1

2
∑

𝑎={𝐿,𝑅},𝑖
𝜓𝑖
𝑎𝜕𝜏𝜓

𝑖
𝑎 as the result of legendre transformation shown in

lagrangian. However, we should pay more attention on following difference:
• It can be seen that only the 𝐽· · · part is affected. Due to the effect of the 𝑖 factor, the

integration result 𝐽2 → −𝐽2.
• Since 𝐻𝐿 +𝐻𝑅 ⇒ 𝐻𝐿−𝐻𝑅, a minus sign will be generated for𝐺𝑎𝑏 due to the different
𝑎𝑏 indices.

Therefore, compared with result in 5-47, we introduce the factor −𝑡𝑎𝑏 here to correct it
in liouuvillian case, with

𝐼

𝑁
= −1

2
log det(𝛿𝑎𝑏𝜕𝜏 − 𝛴𝑎𝑏) (7-26)

+ 1
2

∑
𝑎𝑏

∬ [
𝛴𝑎𝑏 (𝜏, 𝜏′)𝐺𝑎𝑏 (𝜏, 𝜏′) +

1
𝑞
𝑡𝑎𝑏𝐽

2𝑠𝑎𝑏𝐺
𝑞
𝑎𝑏 (𝜏, 𝜏

′)
]
𝑑𝜏𝑑𝜏′ (7-27)

+ 𝑖𝜇
2

∫
[𝐺𝐿𝑅 (𝜏, 𝜏) − 𝐺𝑅𝐿 (𝜏, 𝜏)] 𝑑𝜏 (7-28)

with 𝑡𝑎𝑏 =

{
1 if 𝑎 = 𝑏

−1 if 𝑎 ≠ 𝑏
(7-29)

We can further verify the equivalence between two approaches[8]. Though the proof is
not going to be reviewed here.
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Appendix A More On SYK Standard Techniques

The following discussion has no relation to our research on the MQ wormhole and can
be skipped directly. However, it is very helpful for deeper understanding the derivation of
the 𝐺𝛴 actions and the SD equations. I’ll explains the differences in functional determinant
integrals for bosonic and fermionic fields, the commutativity and anticommutativity of prop-
agators, and why the inserted 𝐺𝛴 identity is chosen as 𝑁

2 . It would be helpful in discussing
the SYK* model for both real scalar fields and complex scalar fields in the future.

A.1 Real Scalar Bosons

Compared to the case of Majorana fermion fields, Real Scalar Bosons behave slightly
different.

1: Since the kinetic term of the scalar field is 1
2 (𝜕𝜙)2, when rewriting it as a quadratic

form, there will be a negative sign brought by integration by parts, i.e. 𝜕𝜏 − 𝛴 ⇒ −𝜕2 − 𝛴 .
2: Referring to the discussion of Gaussian integrals in A. Zee’s book[31], we will have

different signs when calculating the functional determinant.
However, since 𝐺 𝜙 does not have the property of anti-commutation, the form of the

Schwinger-Dyson equations is almost the same as that for Majorana fermions.

A.1.1 Derivation of Functional Determinant

We know that Gaussian integral is
∫ +∞
−∞ 𝑑𝑥 𝑒

−𝑎𝑥2+𝐽𝑥 =
√

𝜋
𝑎
𝑒

𝐽2
4𝑎 . Real scalar with infinite-

dimensional gaussian integral will have the form of∫
𝑑𝐷𝑥 𝑒−𝑥 ·𝐴·𝑥+𝐽 ·𝑥

=

+∞∫
−∞

+∞∫
−∞

· · ·
+∞∫
−∞

𝑑𝑥1𝑑𝑥2 · · · 𝑑𝑥𝑁 𝑒−𝑥 ·𝐴·𝑥+𝐽 ·𝑥

=

(
(𝜋)𝑁

det[𝐴]

) 1
2

𝑒
1
2 𝐽 ·𝐴−1 ·𝐽

(A-1)

Derivation:
1. Diagonalize to obtain the quadratic form 𝐴 = 𝑂−1 · 𝐷 · 𝑂, and introduce a new set of
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variables 𝑦𝑖 = 𝑂𝑖 𝑗𝑥 𝑗 . Thus, 𝑥 · 𝐴 · 𝑥 = 𝑦 · 𝐷 · 𝑦, and 𝐽 · 𝑥 = (𝑂𝐽) · 𝑦.
Remark: For convenience, we do not distinguish between left and right multiplication

here, 𝐽 · 𝑥 = 𝐽𝑇 · 𝑥 = 𝐽𝑇 · 𝑂𝑇 · 𝑂 · 𝑥 = (𝑂𝐽) · 𝑥.
2. The Jacobian factor is det𝑂 = 1, where 𝑂 is an orthogonal transformation.
3. The original expression becomes∏

𝑖

+∞∫
−∞

𝑑𝑦𝑖 𝑒
−𝐷𝑖𝑖𝑦

2
𝑖 +(𝑂𝐽 )𝑖𝑦𝑖 =

∏
𝑖

√
𝜋

𝐷𝑖𝑖

𝑒
(𝑂𝐽 )2𝑖
4𝐷𝑖𝑖

=

√
𝜋𝑁

det 𝐴
𝑒

1
4
∏
𝑖
(𝑂𝐽 )𝑖 ·𝐷−1

𝑖𝑖 · (𝑂𝐽 )𝑖

=

√
𝜋𝑁

det 𝐴
𝑒

1
4 𝐽 ·𝐴−1 ·𝐽

(A-2)

where the transformation from the second step to the third step is as follows:∏
𝑖

(𝑂𝐽)𝑖 · 𝐷−1
𝑖𝑖 · (𝑂𝐽)𝑖 = (𝑂𝐽) · 𝐷−1 · (𝑂𝐽)

= 𝐽𝑇 · 𝑂−1𝐷−1𝑂 · 𝐽
= 𝐽 · 𝐴−1 · 𝐽

(A-3)

A.1.2 Real Scalar 𝐺𝛴 Action and First Set of SD Equations

According to previous discussion, when the action is of the form 𝑆[𝜙] = 1
2

∫
𝑑𝑑𝑥 𝜙(𝑥)𝑂̂𝜙(𝑥),

the path integral result would be:

𝑍 =
∫
D𝜙 𝑒−𝑆 [𝜙] ∝

(
det 𝑂̂

)−1/2
. (A-4)

We can ignore the constant part since it does not affect the subsequent discussion of
the equations of motion. The rest of the derivation can be referred to the discussion of the
Majorana 𝜓 field, so we can directly obtain

𝑒−
𝑁
2 Tr ln(−𝜕2

𝜏−𝛴 ) ⊂ 𝑍 (𝐽), (A-5)
1
2

Tr ln(−𝛿(𝜏1, 𝜏2)𝜕2
𝜏1
− 𝛴) ⊂ 𝐼, (A-6)

1
2

Tr ln(−𝛿(𝜏1, 𝜏2)𝜕2
𝜏2
− 𝛴) + 1

2

∬
𝑑𝜏1𝑑𝜏2 𝛴 (𝜏1, 𝜏2)𝐺 𝜙 (𝜏1, 𝜏2) ⊂ 𝐼 . (A-7)

Similar to the variation process for the fermionic field, but carefully handle the symmetry
of 𝐺 𝜙 and the corresponding signs.
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1
2

∬
𝑑𝜏1𝑑𝜏2 𝛿𝛴 (𝜏1, 𝜏2) ·

(
−(−𝜕2 − 𝛴)−1(𝜏2, 𝜏1) + 𝐺 𝜙 (𝜏1, 𝜏2)

)
= · · ·

(
𝛿𝛴 (𝜏1, 𝜏2) ·

(
−(−𝜕2 − 𝛴)−1(𝜏2, 𝜏1) + 𝐺 𝜙 (𝜏2, 𝜏1)

) ) (A-8)

Thus, we obtain Witten’s result[32]:

𝐺 𝜙 � (−𝜕2 − 𝛴)−1 (A-9)

A.2 Complex Scalar Bosons
A.2.1 Derivation of Functional Determinant

When Majorana variables or real variables become complex variables, things become
different. First, we consider the Gaussian integral of complex variables:∫

𝑑𝑧1𝑑𝑧
∗
1 . . . 𝑑𝑧𝐷𝑑𝑧

∗
𝐷𝑒

−𝑧†𝐴𝑧

=
∫
𝑑𝑧1𝑑𝑧

∗
1 . . . 𝑑𝑧𝐷𝑑𝑧

∗
𝐷𝑒

−∑
𝑖 𝛼𝑖 | 𝑧̃𝑖 |2

=
𝐷∏
𝑖=1

∫
𝑑𝑧𝑖𝑑𝑧

∗
𝑖 𝑒

−𝛼𝑖 | 𝑧̃𝑖 |2

(A-10)

Note that the significant difference here is the existence of
∫
𝑑𝑧 and

∫
𝑑𝑧∗, which can be

understood as twice the degree of integration freedom. The first step to the second step is
to use an orthogonal transformation to diagonalize 𝐴, which is the same as the integration
process of real Gaussian variables.∫

d𝑧d𝑧∗𝑒−𝛼 | 𝑧̃ |2 = 2
∫

d Re 𝑧d Im 𝑧 𝑒−𝛼(Re 𝑧̃)2
𝑒−𝛼(Im 𝑧̃)2

=2 ©­«
∞∫

−∞

d𝑥𝑒−𝛼𝑥2ª®¬
2

= 2
𝜋

𝛼

(A-11)

The factor of 2 comes from 𝑧 = 𝑥 + i𝑦, 𝑧∗ = 𝑥 − i𝑦, |d𝑧 d𝑧∗ | = 2 d𝑥 d𝑦.

So the complete integral contribution is∫
d𝑧1d𝑧∗1 . . . d𝑧𝐷d𝑧∗𝐷 𝑒−𝑧

†𝐴𝑧 =
𝐷∏
𝑖=1

2𝜋
𝛼𝑖

=
(2𝜋)𝐷
det 𝐴

= (2𝜋)𝐷𝑒− Tr ln 𝐴 (A-12)

We can see that the exponential index is twice larger than the real scalar case.
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We can also extend our case to complex fermions, but here we directly give the extension’s
result with detailed discussions can be found in[33].∫

𝑑𝜇(𝜉)𝑒−
∑

𝛼𝛽 𝜉 ∗
𝛼𝐺𝛼𝛽 𝜉𝛽+

∑
𝛼 (𝜂∗

𝛼 𝜉𝛼+𝜂𝛼 𝜉 ∗
𝛼 ) = [det𝐺]−𝑠𝑒

∑
𝛼𝛽 𝜂∗

𝛼𝐺
−1
𝛼𝛽𝜂𝛽 (A-13)

𝑑𝜇(𝜉) = 1
N

∏
𝛼

𝑑𝜉∗𝛼𝑑𝜉𝛼

N =

{
2𝜋𝑖 Bosons
1 Fermions

𝑠 =

{
1 Bosons
−1 Fermions

A.2.2 Complex Scalar 𝐺𝛴 Action and SD Equations

There are some tricky points for complex scalar fields. Due to the reason of complex
Gaussian variable integration, in order to obtain results consistent with the Schwinger-Dyson
equations, the identity operator 1 inserted in the path integral needs to be modified. For
details, refer to[34] . Compared with the insertion of 1 in Sarosi, where the coefficient is
𝑁
2 , here it needs to be changed to the coefficient 𝑁 . Unlike real scalar fields, the functional
integral contribution coefficient of the complex scalar field𝛷(#− 𝛴)𝛷 is 𝑁 instead of 𝑁

2 , so
𝑁 is the matching coefficient.

1 =
∫
D𝐺𝛿

(
𝐺 (𝜏, 𝜏′) − 1

𝑁

∑
𝜙†(𝜏)𝜙(𝜏′)

)
=

∫
D𝐺D𝛴 exp

[
−𝑁

∫
𝑑𝜏𝑑𝜏′𝛴 (𝜏, 𝜏′)

(
𝐺 (𝜏, 𝜏′) − 1

𝑁

∑
𝜙†(𝜏)𝜙(𝜏′)

)] (A-14)

First Set of SD Equations∬
D𝜙†D𝜙 exp(−

∑
𝜙†(# − 𝛴)𝜙 − 𝑁𝛴𝐺 + · · · )

= exp
(
− 𝑁 ln(det(# − 𝛴)) − 𝑁𝛴𝐺 + · · · )

) (A-15)

It can be found that it does not affect the first set of SD equations.
Second Set of SD Equations
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Since complex variables are not the focus of this paper, here we only give a general dis-
cussion. We first focus on the exponential part of the partition function

exp
(
− 𝑁

∬
𝛴𝐺 + Gaussian Part

)
(A-16)

Referring to the result of complex Gaussian variables integration: ∝ 𝜎2(𝑋𝑌 + 𝑌𝑋), where
𝑋,𝑌 are field quantity terms coupled with 𝐽· · ·, 𝐽· · ·. If we properly arrange the time parameters
of the double integral, we will obtain ∼ 2𝜎2(𝑋𝑌 ) = 〈𝐽· · ·𝐽· · ·〉(𝑋𝑌 ). Therefore, the final SD
equation obtained is 𝛴 = 〈𝐽· · ·𝐽· · ·〉(Green Functions), instead of 2〈𝐽· · ·𝐽· · ·〉 for real scalar case.
This is a significant difference.

A.3 Conformal Dynamics

Rewriting the Schwinger-Dyson (SD) equations in frequency space, we obtain

1
𝐺 (𝜔) = −𝑖𝜔 − 𝛴 (𝜔), (A-17)

In the low-energy region where 𝜔 � 𝐽, we can neglect the −𝑖𝜔 term, leading to a homo-
geneous set of first-order SD equations. Transforming back to the time domain, we derive
the SD equations for the low-energy (deep IR) region:

∫
𝑑𝜏′′𝐺 (𝜏, 𝜏′′)𝛴 (𝜏′′, 𝜏′) = −𝛿(𝜏 − 𝜏′) (A-18)

𝛴 (𝜏, 𝜏′) = 𝐽2𝐺 (𝜏, 𝜏′)𝑞−1. (A-19)

These equations exhibit evident reparameterization invariance and can be considered as
CFT1.

Proof
We perform the following reparameterization transformation, with 𝛥 =

1
𝑞

, and it is evi-

dent that the second set of SD equations remains valid.

𝐺 (𝜏, 𝜏′) ↦→ [𝜙′(𝜏)𝜙′(𝜏′)]𝛥𝐺 (𝜙(𝜏), 𝜙(𝜏′)), (A-20)
𝛴 (𝜏, 𝜏′) ↦→ [𝜙′(𝜏)𝜙′(𝜏′)]𝛥(𝑞−1) 𝛴 (𝜙(𝜏), 𝜙(𝜏′)). (A-21)

For the first set of SD equations, it can also be proven that they still hold.
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∫
𝑑𝜏′′ [𝜙′(𝜏)𝜙′(𝜏′′)]

1
𝑞𝐺 (𝜙(𝜏), 𝜙(𝜏′′)) [𝜙′(𝜏′′)𝜙′(𝜏′)]1− 1

𝑞 𝛴 (𝜙(𝜏′′), 𝜙(𝜏′)) (A-22)

=
∫
𝑑𝜙𝐺 (𝜙(𝜏), 𝜙)𝛴 (𝜙, 𝜙(𝜏′))𝜙′(𝜏′)

[
𝜙′(𝜏)
𝜙′(𝜏′)

] 1
𝑞

(A-23)

= −𝜙′(𝜏′)𝛿(𝜙(𝜏) − 𝜙(𝜏′)) (A-24)
= −𝛿(𝜏 − 𝜏′). (A-25)

Due to the presence of 𝛿(𝜙(𝜏) − 𝜙(𝜏′)), it is required that 𝜙(𝜏) ≡ 𝜙(𝜏′), hence 𝜙′ (𝜏 )
𝜙′ (𝜏′ ) ≡ 1.

From this, we find that the system of equations, as described by the equations of motion
(EOM), indeed possesses reparameterization invariance. Moreover, we consider this physical
system to have time translation invariance, thus 𝐺 (𝜏1, 𝜏2) → 𝐺 (𝜏12).

Therefore, we can use CFT1 to study it. Based on the discovered reparameterization
pattern, we can propose the Ansatz:

𝐺conformal(𝜏) =
𝑏

|𝜏 |2𝛥 sgn(𝜏). (A-26)

The function sgn(𝜏) describes the anti-commutation relations of fermions, and 𝑏 can be
obtained by solving the Schwinger-Dyson (SD) equations. For 𝑤 > 0, the Fourier transform
is given by:

∞∫
−∞

𝑑𝜏𝑒𝑖𝜔𝜏 sgn𝜏
|𝜏 |2𝛥 = 2𝑖Im


∞∫
0

𝑑𝜏𝑒𝑖𝜔𝜏𝜏−2𝛥
 (A-27)

= 2𝑖Im

[(
𝑖

𝜔

)1−2𝛥

𝛤 (1 − 2𝛥)
]

(A-28)

= 2𝑖 cos(𝜋𝛥)𝛤 (1 − 2𝛥) 1
𝜔1−2𝛥 . (A-29)

From the first step to the second step, it is required that 𝑤 > 0. However, from the first
equation, we know that F [𝑔(𝑤)] = −F [𝑔(−𝑤)], so it can be extended to the case where
𝑤 < 0[14]. Finally, substituting into the solution yields

𝑏𝑞 =
1
𝜋𝐽2

(
1
2
− 1
𝑞

)
tan

𝜋

𝑞
. (A-30)
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Appendix B More On Determinant Functional

It is known that

ln det(𝐴) = Tr ln(𝐴) (B-1)

In chapter 2 we discussed deriving the SD function through rewriting ln det(𝐴) ⇒ Tr ln(𝐴).
It is convenient, though hard to process in the coupled SYK case. Here, we are going to deal
with the functional determinant using another method.

B.1 Numerical and SD Equations

Before going to discussing the new method, it is worth noticing the advantage of deriving
SD eqn through Tr ln(𝐴) in certain aspects. According to the discussion with Zheng Jie
Ping, using Tr ln for solving directly yields the first set of coupled SYK SD equations in the
following form:

The action and the matrix 𝑀 expansion in the determinant are given by:

𝐼

𝑁
= − 1

2
log det(𝑀) (B-2)

+ 1
2

∑
𝑎𝑏

∬
[𝛴𝑎𝑏 (𝜏, 𝜏′)𝐺𝑎𝑏 (𝜏, 𝜏′) (B-3)

+ 1
𝑞
𝑡𝑎𝑏𝐽

2𝑠𝑎𝑏𝐺
𝑞
𝑎𝑏 (𝜏, 𝜏

′)
]
𝑑𝜏𝑑𝜏′ + 𝑖𝜇

2

∫
[𝐺𝐿𝑅 (𝜏, 𝜏) − 𝐺𝑅𝐿 (𝜏, 𝜏)] 𝑑𝜏 (B-4)

𝑀 = 𝛿𝑎𝑏𝜕𝜏 − 𝛴𝑎𝑏 (B-5)

=

(
𝜕𝜏 − 𝛴𝑎𝑎 −𝛴𝑎𝑏

−𝛴𝑏𝑎 𝜕𝜏 − 𝛴𝑏𝑏

)
(B-6)

−1
2

ln det(𝑀) = −1
2

ln ((𝜕𝜏 − 𝛴𝑎𝑎) · (𝜕𝜏 − 𝛴𝑏𝑏) − (−𝛴𝑎𝑏) · (−𝛴𝑏𝑎)) (B-7)

The variation result is as follows:
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𝐼𝛿𝛴𝑎𝑎
⇒ (B-8)

1
2
𝛿𝛴𝑎𝑎 ×

(
(𝜕𝜏 − 𝛴𝑏𝑏)

(𝜕𝜏 − 𝛴𝑎𝑎) · (𝜕𝜏 − 𝛴𝑏𝑏) − (−𝛴𝑎𝑏) · (−𝛴𝑏𝑎)
+ 𝐺𝑎𝑎

)
(B-9)

For this type of action, the same denominator for 𝛴𝑎𝑏 is beneficial for numerical solutions
of the SD equations; otherwise, divergence may occur. However, for another form of the SD
equations, it is better not to use Tr ln for derivation, but rather to directly expand ln det.

B.2 Mathematical Foundations

Lemma 1:
𝛿 det(𝐴) = 𝛿𝐴𝑖 𝑗 𝐴̃𝑖 𝑗 (B-10)

Proof:

𝐴 =

(
𝑎 𝑏
𝑐 𝑑

)
(B-11)

𝐴 + 𝛿𝐴 =

(
𝑎 + 𝛿𝑎 𝑏 + 𝛿𝑏
𝑐 + 𝛿𝑐 𝑑 + 𝛿𝑑

)
(B-12)

Describing the first-order approximation of the transformation of det:

det(𝐴 + 𝛿𝐴) − det(𝐴) = 𝛿𝑎 × 𝑑 + 𝛿𝑑 × 𝑎 − 𝛿𝑏 × 𝑐 − 𝛿𝑐 × 𝑏 (B-13)

The variation of each matrix element can be seen as:(
𝑎 + 𝛿𝑎 𝑏 + 𝛿𝑏
𝑐 + 𝛿𝑐 𝑑 + 𝛿𝑑

)
(B-14)

Defining the negative sign 𝐴̃𝑖 𝑗 as the algebraic cofactor of the matrix element 𝐴𝑖 𝑗 (note
that it is the algebraic cofactor, not just the minor), we can see from the above calculation
that 𝛿 det(𝐴)𝑎𝑖 𝑗 = 𝐴̃𝑖 𝑗 , which means 𝛿 det (𝐴) = ∑

𝑖 𝑗
𝛿𝐴𝑖 𝑗 𝐴̃𝑖 𝑗 .

Lemma 2:
The inverse of a matrix:

𝐴−1 =
𝐴̃𝑇

det(𝐴) (B-15)

where 𝐴̃ represents the matrix of algebraic cofactors.
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• Corollary:
𝐴̃

det(𝐴) = (𝐴−1)𝑇 (B-16)

𝛿 det(𝐴) = 𝛿𝐴𝑖 𝑗 𝐴̃𝑖 𝑗 , 𝐴−1 =
𝐴̃𝑇

det(𝐴) (B-17)

B.3 The First Set of SD Equations for Single SYK

Here, we focus on how to handle the variation of −1
2 ln det(𝜕 − 𝛴), while the other parts

containing 𝛴 are 1
2

∬
𝛴 (𝜏1, 𝜏2)𝐺 (𝜏1, 𝜏2).

Formally, it is written as:

− ln det(𝐴) 𝐴 = 𝛿(𝜏1, 𝜏2)𝜕𝜏 − 𝛴 (B-18)

Varying 𝛴 is equivalent to formally varying 𝐴 and introducing a negative sign.

= − 𝐴̃

det(𝐴) × (−1) (B-19)

=
𝐴̃

det(𝐴) (B-20)

= (𝐴−1)𝑇 (B-21)
= (𝜕𝜏 − 𝛴)−1(𝜏2, 𝜏1) (B-22)

Remark: We discuss the basis of the matrix as 𝜏, with the row and column indices being
𝜏1, 𝜏2. Thus, the effect of transposition is merely to swap the positions of 𝜏2, 𝜏1.

Therefore, our variation result gives us:

(𝐴−1)𝑇 + 𝐺 = 0 (B-23)
(𝜕𝜏 − 𝛴) (𝜏2, 𝜏1) + 𝐺 (𝜏1, 𝜏2) = 0 (B-24)

Symmetry of 𝐺𝑎𝑏 (𝜏1, 𝜏2):

Although we discuss 𝐺𝑎𝑏, for single SYK, we only need to set 𝑎 = 𝑏.
First, it is important to note that we are discussing the on-shell 𝐺, which should be rep-

resented as:
𝐺𝑎𝑏 (𝜏, 𝜏′) = 〈T𝜓𝑎 (𝜏)𝜓𝑏 (𝜏′)〉 (B-25)
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We must consider the on-shell representation as the time-ordered Green’s function, rather
than a simple bilinear form, because this relationship ensures the symmetry of 𝐺𝑎𝑏 (𝜏, 𝜏′).

Review of QFT Not Grassmann Numbers but Operators
Although 𝜓 is a Grassmann number, we should consider its operator here. When quan-

tizing fermions, the quantization condition is {𝜓𝑖 (𝑡), 𝜓 𝑗 (𝑡)} = 𝛿𝑖 𝑗 . Note that this tells us that
for different 𝑖 𝑗 , we have anticommutation relations. However, for the same 𝑖 𝑗 , the situation
is different from the unquantized case. In our discussion of the on-shell SD equations, we
assume that the quantization condition has already been introduced.

Limitations of Equal-Time Commutation Relations
The limitation is that it is not possible to discuss the commutation relations of fermions

at arbitrary times 𝜓𝑖 (𝑡) = 𝑒−𝐻𝑡𝜓𝑖 (0)𝑒𝑖𝐻𝑡 , so {𝜓𝑖 (𝑡′), 𝜓 𝑗 (𝑡)} = (𝑒−𝐻𝑡𝜓𝑖𝑒
𝑖𝐻 (𝑡−𝑡 ′ )𝜓 𝑗𝑒

𝑖𝐻𝑡 ′ +
(𝑖 ↔ 𝑗)) becomes very complicated. Thus, theoretically, this situation cannot be directly
discussed.

Time Ordering Solves the Problem
However, things become much better when we introduce time ordering. For a 1D Majo-

rana system,

T {𝜓(𝑥)𝜓(𝑦)} =
{
𝜓(𝑥)𝜓(𝑦), 𝑥 > 𝑦

−𝜓(𝑦)𝜓(𝑥), 𝑥 < 𝑦
(B-26)

Thus, we can see that

T {𝜓(𝑥)𝜓(𝑦)} = −T {𝜓(𝑦)𝜓(𝑥)}. (B-27)

Therefore, we obtain
𝐺𝑎𝑏 (𝜏, 𝜏′)𝑇 = 〈T {𝜓𝑎 (𝜏)𝜓𝑏 (𝜏′)}〉𝑇

= 〈T {𝜓𝑏 (𝜏′)𝜓𝑎 (𝜏)}〉
= −〈T {𝜓𝑎 (𝜏)𝜓𝑏 (𝜏′)}〉
= −𝐺𝑎𝑏 (𝜏, 𝜏′).

(B-28)

Thus, the SD equation becomes

𝐴−1 + 𝐺𝑇 = 0,
𝐴−1 = 𝐺.

(B-29)
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Appendix C Verification Of Symmetry

𝑆𝐿 (2) symmetry for Schwarzian

ClearAll["Global`*"]

r[u_] := (a*t[u] + b)/(c*t[u] + d)

Sch[u_] := (2 r'[u] r'''[u] - 3 r''[u]^2)/(2 r'[u]^2)

Sch[u] // Simplify // Expand

Composition Law For Schwarzian

func[t_] := f[g[t]]

Sch[t_] := (2 D[func[t], t] D[func[t], {t, 3}] -

3 D[func[t], {t, 2}]^2)/(2 D[func[t], t]^2)

Sch[t] // Expand

𝑆𝐿 (2) For Propagator

r[u_] := (a*t[u] + b)/(c*t[u] + d)

r'[u1] r'[u2]/(r[u1] - r[u2])^2 // Simplify

𝑆𝐿 (2) For sin propagator

Discussed in 2 that 𝑆𝐿 (2,R) transformation of Schwarzian is given by changing 𝑓 (𝑢) in
Sch( 𝑓 (𝑢), 𝑢) to 𝑎𝑡 (𝑢)+𝑏

𝑐𝑡 (𝑢)+𝑑 . Verified in C. However, we need to ask 𝑎𝑑 − 𝑏𝑐 = 1 to satisfy inte-
gration measure in Schwarzian action to be invariant. Therefore, when the action is written
in global time, Sch(tan( 𝑡 (𝑢)2 ), 𝑢), corresponding 𝑆𝐿 (2) charge originated from the transfor-
mation in tan( 𝑡 (𝑢)2 ). To simplify the derivation of how interaction part is 𝑆𝐿 (2) invariant,
we’ll simply rescale the 𝑡 (𝑢) → 2𝑡 (𝑢).

Following derivation is supported by Jie Ping Zheng
We’ll denote tan 𝑡 = 𝑓 for convenience. with 𝑡 = (𝑡1) and tan 𝑡 = 𝑓 = 𝑎 tan𝑢+𝑏

𝑐 tan𝑢+𝑑 , with
(𝑎𝑑 − 𝑏𝑐 = 1)

We can see that

𝑓 ′ = tan(𝑡)′ = 𝑡′

cos2(𝑡) = (1 + tan2(𝑡))𝑡′ = (1 + 𝑓 2)𝑡′
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Therefore we have

𝑡′1𝑡
′
2

sin(𝑡1 − 𝑡2)2 =
𝑓 ′1 𝑓

′
2 cos2 𝑡1 cos2 𝑡2

(sin 𝑡1 cos 𝑡2 − cos 𝑡1 sin 𝑡2)2 =
𝑓 ′1 𝑓

′
2

(tan 𝑡1 − tan 𝑡2)2

On the other hand, since 𝑓 = 𝑎 tan𝑢+𝑏
𝑐 tan𝑢+𝑑 , we have

𝑓 ′ =
1

cos2 𝑢

1
(𝑐 tan 𝑢 + 𝑑)2

therefore

𝑡′𝛥1 𝑡
′𝛥
2

sin(𝑡1 − 𝑡2)2𝛥 =
𝑓 ′𝛥1 𝑓 ′𝛥2 cos2𝛥 𝑡1 cos2𝛥 𝑡2

(sin 𝑡1 cos 𝑡2 − cos 𝑡1 sin 𝑡2)2𝛥 =
𝑓 ′𝛥1 𝑓 ′𝛥2

(tan 𝑡1 − tan 𝑡2)2𝛥

=
1

cos2𝛥 𝑢1 cos2𝛥 𝑢2

1
(𝑐 tan 𝑢1 + 𝑑)2𝛥(𝑐 tan 𝑢2 + 𝑑)2𝛥

(𝑎 tan 𝑢1 + 𝑏 − 𝑐 tan 𝑢1 + 𝑑)
(𝑎 tan 𝑢1 + 𝑏 − 𝑐 tan 𝑢2 + 𝑑)2𝛥

=
1

cos2𝛥 𝑢1 cos2𝛥 𝑢2

1
[(𝑎 tan 𝑢1 + 𝑏)(𝑐 tan 𝑢2 + 𝑑) − (𝑎 tan 𝑢2 + 𝑏)(𝑐 tan 𝑢1 + 𝑑)]2𝛥

1
sin(𝑢1 − 𝑢2)2𝛥

=
1

cos2𝛥 𝑢1 cos2𝛥 𝑢2

1
(sin 𝑢1 cos 𝑢2 − cos 𝑢1 sin 𝑢2)2𝛥 =

1
(sin 𝑢1 cos 𝑢2 − cos 𝑢1 sin 𝑢2)2𝛥

1
sin(𝑢1 − 𝑢2)2𝛥

proving the invariance of the conformal solution under 𝑆𝐿 (2,R) transformation.
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